scholarly journals The equatorial electrojet during geomagnetic storms and substorms

2015 ◽  
Vol 120 (3) ◽  
pp. 2276-2287 ◽  
Author(s):  
Yosuke Yamazaki ◽  
Michael J. Kosch

1996 ◽  
Vol 14 (6) ◽  
pp. 608-618 ◽  
Author(s):  
T. Iyemori ◽  
D. R. K. Rao

Abstract. In order to investigate the causal relationship between magnetic storms and substorms, variations of the mid-latitude geomagnetic indices, ASY (asymmetric part) and SYM (symmetric part), at substorm onsets are examined. Substorm onsets are defined by three different phenomena; (1) a rapid increase in the mid-latitude asymmetric-disturbance indices, ASY-D and ASY-H, with a shape of so-called `mid-latitude positive bay\\'; (2) a sharp decrease in the AL index; (3) an onset of Pi2 geomagnetic pulsation. The positive bays are selected using eye inspection and a pattern-matching technique. The 1-min-resolution SYM-H index, which is essentially the same as the hourly Dst index except in terms of the time resolution, does not show any statistically significant development after the onset of substorms; it tends to decay after the onset rather than to develop. It is suggested by a simple model calculation that the decay of the magnetospheric tail current after substorm onset is responsible for the decay of the Dst field. The relation between the IMF southward turning and the development of the Dst field is re-examined. The results support the idea that the geomagnetic storms and substorms are independent processes; that is, the ring-current development is not the result of the frequent occurrence of substorms, but that of enhanced convection caused by the large southward IMF. A substorm is the process of energy dissipation in the magnetosphere, and its contribution to the storm-time ring-current formation seems to be negligible. The decay of the Dst field after a substorm onset is explained by a magnetospheric energy theorem.



1999 ◽  
Vol 17 (11) ◽  
pp. 1426-1438 ◽  
Author(s):  
R. G. Rastogi

Abstract. The work describes an intensive study of storm sudden commencement (SSC) impulses in horizontal (H), eastward (Y) and vertical (Z) fields at four Indian geomagnetic observatories between 1958–1992. The midday maximum of ΔH has been shown to exist even at the low-latitude station Alibag which is outside the equatorial electrojet belt, suggesting that SSC is associated with an eastward electric field at equatorial and low latitudes. The impulses in Y field are shown to be linearly and inversely related to ΔH at Annamalainagar and Alibag. The average SC disturbance vector is shown to be about 10–20°W of the geomagnetic meridian. The local time variation of the angle is more westerly during dusk hours in summer and around dawn in the winter months. This clearly suggests an effect of the orientation of shock front plane of the solar plasma with respect to the geomagnetic meridian. The ΔZ at SSC have a positive impulse as in ΔH. The ratio of ΔZ/ΔH are abnormally large exceeding 1.0 in most of the cases at Trivandrum. The latitudinal variation of ΔZ shows a tendency towards a minimum over the equator during the nighttime hours. These effects are explained as (1) resulting from the electromagnetic induction effects due to the equatorial electrojet current in the subsurface conducting layers between India and Sri Lanka, due to channelling of ocean currents through the Palk Strait and (2) due to the concentration of induced currents over extended latitude zones towards the conducting graben between India and Sri Lanka just south of Trivandrum.Key words. Interplanetary physics (interplanetary shocks) · Ionosphere (equatorial ionosphere) · Magnetospheric physics (storms and substorms)



2018 ◽  
Vol 14 (2) ◽  
pp. 97
Author(s):  
Anwar Santoso ◽  
Dadang Nurmali ◽  
Mira Juangsih ◽  
Iyus Edi Rusnadi ◽  
Sri Ekawati ◽  
...  

The influence of geomagnetic storms on the ionosphere in the equatorial and low latitudes can be either rising or falling value of the value foF2 with the different response delay time. The difference in response is one of them allegedly influenced by the modification of Equatorial Electrojet (EEJ) generated by the penetration of high latitude electric field towards the low latitude electric field and the equator. Therefore, this paper analyzes the influence of the high latitude penetration of electric current to the low latitude electric current towards the ionosphere response to Indonesia's current geomagnetic storms using the data foF2 BPAA Sumedang (SMD; 6,910 S; 106,830E geographic coordinates or 16,550 S; 179,950 E magnetic coordinates) and data from the Biak geomagnetic field station (BIK; 1,080 S; 136,050 E geographic coordinates or  9,730 S; 207,390 E magnetic coordinates) in 2000-2001. The result showed that the injection of the electric field of the high latitudes to lower latitudes causing foF2 BPAA Sumedang to be disturbed. Onset of the foF2 disturbance in BPAA Sumedang started coincide with EEJ(HBIK-HDRW) and reached its minimum point with a time delay between 0 to 4 hours before and after Dst index reached the minimum point. For a delay time of 0 to 4 hours after the Dst index reached the minimum point, the results were in accordance with the research results from the prior research. However, for the time difference of between 0 to 4 hours before the Dst index reached the minimum point, the results differ from their results. AbstrakPengaruh badai geomagnet terhadap ionosfer di ekuator dan lintang rendah berupa naiknya nilai foF2 atau turunnya nilai foF2 dengan waktu tunda respon berbeda-beda. Perbedaan respon tersebut salah satunya diduga dipengaruhi oleh modifikasi Equatorial electrojet (EEJ) yang dihasilkan oleh penetrasi medan listrik lintang tinggi sampai daerah lintang rendah dan ekuator. Oleh karena itu, dalam makalah ini dilakukan analisis pengaruh penetrasi arus listrik lintang tinggi ke lintang rendah terhadap ionosfer saat badai geomagnet menggunakan data foF2 dari Balai Pengamatan Antariksa dan Atmosfer (BPAA) Sumedang (SMD; 6,910 LS; 106,830 BT koordinat geografis atau 16,550 LS; 179,950 BT koordinat magnet) dan data medan geomagnet dari stasiun Biak (BIK; 1,080 LS; 136,050 BT koordinat geografis atau 9,730 LS; 207,390 BT koordinat magnet) tahun 2000-2001. Hasilnya diperoleh bahwa penetrasi medan listrik dari lintang tinggi ke lintang lebih rendah Indonesia menyebabkan foF2 BPAA Sumedang terganggu. Onset gangguan foF2 BPAA Sumedang mulai terjadi bertepatan dengan EEJ(HBIK-HDRW) mencapai titik minimumnya dengan jeda waktu antara 0 sampai 4 jam sebelum dan sesudah indeks Dst mencapai minimum. Untuk beda waktu 0 sampai 4 jam sesudah indeks Dst mencapai minimum, hasilnya bersesuaian dengan hasil penelitian peneliti sebelumnya. Namun, untuk beda waktu 0 sampai 4 jam sebelum indeks Dst mencapai minimum, hasilnya merupakan temuan berbeda dari hasil mereka.



1975 ◽  
Vol 13 (3) ◽  
pp. 990 ◽  
Author(s):  
G. L. Siscoe




1999 ◽  
Vol 17 (10) ◽  
pp. 1268-1275 ◽  
Author(s):  
H. Gleisner ◽  
H. Lundstedt

Abstract. Geomagnetic storms and substorms develop under strong control of the solar wind. This is demonstrated by the fact that the geomagnetic activity indices Dst and AE can be predicted from the solar wind alone. A consequence of the strong control by a common source is that substorm and storm indices tend to be highly correlated. However, a part of this correlation is likely to be an effect of internal magnetospheric processes, such as a ring-current modulation of the solar wind-AE relation. The present work extends previous studies of nonlinear AE predictions from the solar wind. It is examined whether the AE predictions are modulated by the Dst index.This is accomplished by comparing neural network predictions from Dst and the solar wind, with predictions from the solar wind alone. Two conclusions are reached: (1) with an optimal set of solar-wind data available, the AE predictions are not markedly improved by the Dst input, but (2) the AE predictions are improved by Dst if less than, or other than, the optimum solar-wind data are available to the net. It appears that the solar wind-AE relation described by an optimized neural net is not significantly modified by the magnetosphere's Dst state. When the solar wind alone is used to predict AE, the correlation between predicted and observed AE is 0.86, while the prediction residual is nearly uncorrelated to Dst. Further, the finding that Dst can partly compensate for missing information on the solar wind, is of potential importance in operational forecasting where gaps in the stream of real time solar-wind data are a common occurrence.Key words. Magnetospheric physics (solar wind · magnetosphere interactions; storms and substorms)





2012 ◽  
Vol 30 (12) ◽  
pp. 1633-1643 ◽  
Author(s):  
J. T. Niehof ◽  
S. K. Morley ◽  
R. H. W. Friedel

Abstract. Energetic ions observed in the cusp have been explained as a result of processes within the magnetosphere, but also proposed as a driver of some of those same processes. This study assesses potential connections between energetic ions observed in the cusp and geomagnetic storm and substorm activity. These connections may suggest sources of cusp energetic particles (CEPs), or imply effects of these particles on magnetospheric dynamics. We identify CEPs from six years of cusp crossings by the Polar satellite, relating them to storm and substorm onsets. CEPs showed no significant dependence on storms but did show a weak, statistically significant, increase after substorm onsets. CEPs had no significant association with subsequent storm or substorm onsets. We conclude that substorm acceleration may contribute to CEPs but CEPs are unlikely to contribute to global magnetospheric dynamics.



2020 ◽  
Author(s):  
Samuel Walton ◽  
Colin Forsyth ◽  
Iain Jonathan Rae ◽  
Clare Watt ◽  
Richard Horne ◽  
...  

<p>The electron population inside Earth’s outer radiation belt is highly variable and typically linked to geomagnetic activity such as storms and substorms. These variations can differ with radial distance, such that the fluxes at the outer boundary are different from those in the heart of the belt. Using data from the Proton Electron Telescope (PET) on board NASA’s Solar Anomalous Magnetospheric Particle Explorer (SAMPEX), we have examined the correlation between electron fluxes at all L's within the radiation belts for a range of geomagnetic conditions, as well as longer-term averages. Our analysis shows that fluxes at L≈2-4 and L≈4-10 are well correlated within these regions, with coefficients in excess of 80%, however, the correlation between these two regions is low. These correlations vary between storm-times and quiet-times. We examine whether, and to what extent this correlation is related to the level of enhancement of the outer radiation belt during geomagnetic storms, and whether the plasmapause plays any role defining the different regions of correlated flux.</p>



2019 ◽  
Vol 3 (5) ◽  
pp. 380-390
Author(s):  
Tian Tian ◽  
◽  
Zheng Chang ◽  
LingFeng Sun ◽  
JunShui Bai ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document