scholarly journals Van Allen Probes investigation of the large‐scale duskward electric field and its role in ring current formation and plasmasphere erosion in the 1 June 2013 storm

2015 ◽  
Vol 120 (6) ◽  
pp. 4531-4543 ◽  
Author(s):  
S. A. Thaller ◽  
J. R. Wygant ◽  
L. Dai ◽  
A. W. Breneman ◽  
K. Kersten ◽  
...  
2020 ◽  
Author(s):  
Wenlong Liu ◽  
Zhao Zhang

<p>Corotation electric field is important in the inner magnetosphere topology, which was usually calculated by assuming 24h corotation period. However, some studies suggested that plasmasphere corotation lag exists which leads to the decrease of corotation electric field. In this study, we use electric field measurements from Van Allen Probes mission from 2013 to 2017 to statistically calculate the distribution of large-scale electric field in the inner magnetosphere. A new method is subsequently developed to separate corotation electric field from convection electric field. Our research shows electric field is inversely proportional to the square of L, and, with the assumption of dipole magnetic field, the rotation period of plasmasphere is estimated as 27h, consistent to the results by Sandel et al. [2003] and Burch et al. [2004] with EUV imaging of the plasmasphere. Based on the research, a new empirical model of innermagnetospheric corotation electric field was estibalished, which is significant for a more accurate understanding the large-scale electric field in the inner magnetosphere.</p>


2005 ◽  
Vol 23 (2) ◽  
pp. 579-591 ◽  
Author(s):  
N. Yu. Ganushkina ◽  
T. I. Pulkkinen ◽  
T. Fritz

Abstract. Particles with different energies produce varying contributions to the total ring current energy density as the storm progresses. Ring current energy densities and total ring current energies were obtained using particle data from the Polar CAMMICE/MICS instrument during several storms observed during the years 1996-1998. Four different energy ranges for particles are considered: total (1-200keV), low (1-20keV), medium (20-80keV) and high (80-200keV). Evolution of contributions from particles with different energy ranges to the total energy density of the ring current during all storm phases is followed. To model this evolution we trace protons with arbitrary pitch angles numerically in the drift approximation. Tracing is performed in the large-scale and small-scale stationary and time-dependent magnetic and electric field models. Small-scale time-dependent electric field is given by a Gaussian electric field pulse with an azimuthal field component propagating inward with a velocity dependent on radial distance. We model particle inward motion and energization by a series of electric field pulses representing substorm activations during storm events. We demonstrate that such fluctuating fields in the form of localized electromagnetic pulses can effectively energize the plasma sheet particles to higher energies (>80keV) and transport them inward to closed drift shells. The contribution from these high energy particles dominates the total ring current energy during storm recovery phase. We analyse the model contributions from particles with different energy ranges to the total energy density of the ring current during all storm phases. By comparing these results with observations we show that the formation of the ring current is a combination of large-scale convection and pulsed inward shift and consequent energization of the ring current particles.


2010 ◽  
Vol 28 (9) ◽  
pp. 1625-1631
Author(s):  
Z. H. He ◽  
Z. X. Liu ◽  
T. Chen ◽  
C. Shen ◽  
X. Li ◽  
...  

Abstract. The relationship between the average structure of the inner magnetospheric large-scale electric field and geomagnetic activity levels has been investigated by Double Star TC-1 data for radial distances ρ between 4.5 RE and 12.5 RE and MLT between 18:00 h and 06:00 h from July to October in 2004 and 2005. The sunward component of the electric field decreases monotonically as ρ increases and approaches zero as the distance off the Earth is greater than 10 RE. The dawn-dusk component is always duskward. It decreases at about 6 RE where the ring current is typically observed to be the strongest and shows strong asymmetry with respect to the magnetic local time. Surprisingly, the average electric field obtained from TC-1 for low activity is almost comparable to that observed during moderate activity, which is always duskward at the magnetotail (8 RE~12 RE).


2013 ◽  
Vol 325-326 ◽  
pp. 476-479 ◽  
Author(s):  
Lin Suo Zeng ◽  
Zhe Wu

This article is based on finite element theory and use ANSYS simulation software to establish electric field calculation model of converter transformer for a ±800kV and make electric field calculation and analysis for valve winding. Converter transformer valve winding contour distribution of electric field have completed in the AC, DC and polarity reversal voltage.


1984 ◽  
Vol 46 (4) ◽  
pp. 355-362 ◽  
Author(s):  
R Raghavarao ◽  
J.N Desai ◽  
B.G Anandarao ◽  
R Narayanan ◽  
R Sekar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document