scholarly journals Mean sea-level variability along the northeast American Atlantic coast and the roles of the wind and the overturning circulation

2014 ◽  
Vol 119 (12) ◽  
pp. 8916-8935 ◽  
Author(s):  
Philip L. Woodworth ◽  
Miguel Á. Morales Maqueda ◽  
Vassil M. Roussenov ◽  
Richard G. Williams ◽  
Chris W. Hughes
2014 ◽  
Vol 119 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sönke Dangendorf ◽  
Francisco M. Calafat ◽  
Arne Arns ◽  
Thomas Wahl ◽  
Ivan D. Haigh ◽  
...  

2008 ◽  
Vol 63 (2-3) ◽  
pp. 196-202 ◽  
Author(s):  
Michael N. Tsimplis ◽  
Andrew G.P. Shaw

Author(s):  
M. Hernández ◽  
C. A. Martínez ◽  
O. Marzo

Abstract. The objective of the present paper was to determine a first approximation of coastal zone flooding by 2100, taking into account the more persistent processes of sea level variability and non-accelerated linear sea level rise estimation to assess the main impacts. The annual linear rate of mean sea level rise in the Cuban archipelago, obtained from the longest tide gauge records, has fluctuated between 0.005 cm/year at Casilda and 0.214 cm/year at Siboney. The main sea level rise effects for the Cuban coastal zone due to climate change and global warming are shown. Monthly and annual mean sea level anomalies, some of which are similar to or higher than the mean sea level rise estimated for halfway through the present century, reinforce the inland seawater penetration due to the semi-daily high tide. The combination of these different events will result in the loss of goods and services, and require expensive investments for adaption.


2015 ◽  
Vol 07 (01n02) ◽  
pp. 1550005 ◽  
Author(s):  
Leonard J. Pietrafesa ◽  
Shaowu Bao ◽  
Tingzhuang Yan ◽  
Michael Slattery ◽  
Paul T. Gayes

Significant portions of the United States (U.S.) property, commerce and ecosystem assets are located at or near the coast, making them vulnerable to sea level variability and change, especially relative rises. Although global mean sea level (MSL) and sea level rise (SLR) are fundamental considerations, regional mean sea level (RSL) variability along the boundaries of U.S. along the two ocean basins are critical, particularly if the amplitudes of seasonal to annual to inter-annual variability is high. Of interest is that the conventional wisdom of the U.S. agencies, the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) which both contend that the sources of sea level rise are related principally to heat absorption and release by the ocean(s) to the atmosphere and vice versa, and by Polar glacier melting and freshwater input into the ocean(s). While these phenomena are of great importance to SLR and sea level variability (SLV), we assess a suite of climate factors and the Gulf Stream, for evidence of correlations and thus possible influences; though causality is beyond the scope of this study. In this study, climate factors related to oceanic and atmospheric heat purveyors and reservoirs are analyzed and assessed for possible correlations with sea level variability and overall trends on actionable scales (localized as opposed to global scale). The results confirm that oceanic and atmospheric temperature variability and the disposition of heat accumulation or the lack thereof, are important players in sea level variability and rise, but also that the Atlantic Multi-Decadal Oscillation, the El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation, the Quasi-Biennial Oscillation, the North Atlantic Oscillation, Solar Irradiance, the Western Boundary Current-Gulf Stream, and other climate factors, can have strong correlative and perhaps even causal, modulating effects on the monthly to seasonal to annual to inter-annual to decadal to multi-decadal sea level variability at the community level.


Water ◽  
2012 ◽  
Vol 4 (1) ◽  
pp. 170-195 ◽  
Author(s):  
Sönke Dangendorf ◽  
Thomas Wahl ◽  
Hartmut Hein ◽  
Jürgen Jensen ◽  
Stephan Mai ◽  
...  

2017 ◽  
Author(s):  
Saskia Esselborn ◽  
Sergei Rudenko ◽  
Tilo Schöne

Abstract. Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. Upper bound errors for seasonal, interannual (5 years), and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams (GFZ, GSFC, and GRGS). The global mean sea level error related to the orbit is of the order of 7 mm (more than 10 % of the sea level variability) with negligible contributions on the annual and decadal time scale. In contrast, the orbit related error of the interannual trend is 0.1 mm/year (18 % of the corresponding sea level variability) and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit related error is up to 11 mm and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal time scales, the orbit related trend uncertainties reach regionally more than 1 mm/year. The interannual trend errors account for 10 % of the observed sea level signal in the Tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit related trend errors are prominent in a couple of regions including: South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and Mediterranean Sea. Based on a set of test orbits calculated at GFZ, the sources of the observed orbit related errors are further investigated. Main contributors on all time scales are uncertainties in Earth’s time variable gravity field models and on annual to interannual time scales discrepancies of the tracking station sub-networks, i.e., SLR and DORIS.


Sign in / Sign up

Export Citation Format

Share Document