scholarly journals Modeling the response of subglacial drainage at Paakitsoq, west Greenland, to 21stcentury climate change

2014 ◽  
Vol 119 (12) ◽  
pp. 2619-2634 ◽  
Author(s):  
Jerome R. Mayaud ◽  
Alison F. Banwell ◽  
Neil S. Arnold ◽  
Ian C. Willis
2020 ◽  
Vol 643 ◽  
pp. 197-217 ◽  
Author(s):  
SME Fortune ◽  
SH Ferguson ◽  
AW Trites ◽  
B LeBlanc ◽  
V LeMay ◽  
...  

Climate change may affect the foraging success of bowhead whales Balaena mysticetus by altering the diversity and abundance of zooplankton species available as food. However, assessing climate-induced impacts first requires documenting feeding conditions under current environmental conditions. We collected seasonal movement and dive-behaviour data from 25 Eastern Canada-West Greenland bowheads instrumented with time-depth telemetry tags and used state-space models to examine whale movements and dive behaviours. Zooplankton samples were also collected in Cumberland Sound (CS) to determine species composition and biomass. We found that CS was used seasonally by 14 of the 25 tagged whales. Area-restricted movement was the dominant behaviour in CS, suggesting that the tagged whales allocated considerable time to feeding. Prey sampling data suggested that bowheads were exploiting energy-rich Arctic copepods such as Calanus glacialis and C. hyperboreus during summer. Dive behaviour changed seasonally in CS. Most notably, probable feeding dives were substantially shallower during spring and summer compared to fall and winter. These seasonal changes in dive depths likely reflect changes in the vertical distribution of calanoid copepods, which are known to suspend development and overwinter at depth during fall and winter when availability of their phytoplankton prey is presumed to be lower. Overall, CS appears to be an important year-round foraging habitat for bowheads, but is particularly important during the late summer and fall. Whether CS will remain a reliable feeding area for bowhead whales under climate change is not yet known.


2021 ◽  
Author(s):  
Jakob Thyrring ◽  
Susse Wegeberg ◽  
Martin E Blicher ◽  
Dorte Krause-Jensen ◽  
Signe H&oslashgslund ◽  
...  

Climate change has ecosystem-wide cascading effects. Little is known, however, about the resilience of Arctic marine ecosystems to environmental change. Here we quantify and compare large-scale patterns in rocky intertidal biomass, coverage and zonation in six regions along a north-south gradient of temperature and ice conditions in West Greenland (60-72°N). We related the level and variation in assemblage composition, biomass and coverage to latitudinal-scale environmental drivers. Across all latitudes, the intertidal assemblage was dominated by a core of stress-tolerant foundation species that constituted >95% of the biomass. Hence, canopy-forming macroalgae, represented by Fucus distichus subsp. evanescens and F. vesiculosus and, up to 69 °N, also Ascophyllum nodosum, together with Semibalanus balanoides, occupied >70% of the vertical tidal range in all regions. Thus, a similar functional assemblage composition occurred across regions, and no latitudinal depression was observed. The most conspicuous difference in species composition from south to north was that three common species (the macroalgae Ascophyllum nodosum, the amphipod Gammarus setosus and the gastropod Littorina obtusata) disappeared from the mid-intertidal, although at different latitudes. There were no significant relationships between assemblage metrics and air temperature or sea ice coverage as obtained from weather stations and satellites, respectively. Although the mean biomass decreased >50% from south to north, local biomass in excess of 10 000 g ww m-2 was found even at the northernmost site, demonstrating the patchiness of this habitat and the effect of small-scale variation in environmental characteristics. Hence, using the latitudinal gradient in a space-for-time substitution, our results suggest that while climate modification may lead to an overall increase in the intertidal biomass in north Greenland, it is unlikely to drive dramatic functional changes in ecosystem structure in the near future. Our dataset provides an important baseline for future studies to verify these predictions for Greenlands intertidal zone.


1989 ◽  
Vol 35 (120) ◽  
pp. 157-162 ◽  
Author(s):  
Andrew J. Russell

Abstract The hydrographs of two jökulhlaups resulting from the sudden drainage of an ice-dammed lake in West Greenland in 1984 and 1987 are compared. The first flood had a similar peak discharge to the second but drained only two-thirds of the total volume of the 1987 event which amounted to 32–36 × 106 m3 in 36 h. Calculations based on the lake refill time suggest that it drains every 2–3 years, but that peak flows may be variable from flood to flood. The timing of the jökulhlaups in relation to the melt season may reflect variations of water pressure within the subglacial drainage networks, and changes in the configuration of these networks and the positions of crevasses on an annual basis.


2021 ◽  
Author(s):  
Jane K. Hart ◽  
David S. Young ◽  
Nathaniel R. Baurley ◽  
Benjamin A. Robson ◽  
Kirk Martinez

Abstract Subglacial hydrology is a key element in glacier response to climate change, but investigations of this environment are logistically difficult. Most models are based on summer data from glaciers resting on rigid bedrocks. However a significant number of glaciers rest on soft (unconsolidated sedimentary) beds. Here we present a unique multi-year instrumented record of the development of seasonal subglacial behavior associated with an Icelandic temperate glacier resting on a deformable sediment layer. We observe a distinct annual pattern in the subglacial hydrology based on self-organizing anastomosing braided channels. Water is stored within the subglacial system itself (till, braided system and ‘ponds’), allowing the rapid access of water to enable glacier speed-up events to occur throughout the year, particularly in winter.


2021 ◽  
Author(s):  
Jane Hart ◽  
David Young ◽  
Nathaniel Baurley ◽  
Benjamin Robson ◽  
Kirk Martinez

Abstract Subglacial hydrology is a key element in glacier response to climate change, but investigations of this environment are logistically difficult. Most models are based on summer data from glaciers resting on rigid bedrocks. However a significant number of glaciers rest on soft (unconsolidated sedimentary) beds, including the potentially unstable ice streams of West Antarctica. Here we present a rare multi-year instrumented record of the development of seasonal subglacial behavior in a temperate glacier resting on a deformable sediment layer as an analogue for West Antarctica. We observe a distinct annual pattern in the subglacial hydrology based on self-organizing anastomosing braided channels. Water is stored within the subglacial system itself (till, braided system and ‘ponds’), allowing the rapid access of water to enable glacier speed-up events to occur throughout the year, particularly in winter.


2012 ◽  
Vol 69 (7) ◽  
pp. 1226-1233 ◽  
Author(s):  
Kristin L. Laidre ◽  
Mads Peter Heide-Jørgensen

Abstract Laidre, K. L., and Heide-Jørgensen, M. P. 2012. Spring partitioning of Disko Bay, West Greenland, by Arctic and Subarctic baleen whales. – ICES Journal of Marine Science, 69: . Movements of co-occurring bowhead (Balaena mysticetus) and humpback (Megaptera novaeangliae) whales in Disko Bay, West Greenland, were examined using satellite telemetry. Data on movements, habitat use, and phenology were collected from tagged 49 bowheads and 44 humpbacks during the transition from sea-ice breakup to open water between 2008 and 2010. Bowhead whales began their northward spring migration around 27 May (median day-of-the-year departure date = 147, interquartile range 141–153) and were distributed broadly in northern and central Disko Bay in water depths between 100 and 400 m. Humpback whales arrived in Disko Bay no later than 2 June and were located in shallow water (<100 m) along the coasts of the mainland or Disko Island. Trends in departure date from Disko Bay were significant for bowhead whales (∼15 d later, p < 0.001) between two periods: 2001–2006 and 2008–2010. Many species are predicted to arrive earlier in the Arctic and to expand their range northwards with reduced sea ice and increasing temperatures under climate change. Quantifying the spatial and temporal relationships between co-occurring Arctic and Subarctic top predators allows for baseline insight to be gained on how climate change might alter interspecies interactions.


Ecography ◽  
2021 ◽  
Author(s):  
Jakob Thyrring ◽  
Susse Wegeberg ◽  
Martin E. Blicher ◽  
Dorte Krause‐Jensen ◽  
Signe Høgslund ◽  
...  

2021 ◽  
Author(s):  
◽  
Alexandra Winter-Billington

<p>Temporal and spatial variability of stream discharge is directly related to variation in local climate, and this in turn is related to both  regional and global atmospheric circulation and climate change. The relationship is complicated in glacierised catchments. This study aims to identify relationships between discharge from Brewster Glacier proglacial stream and both local atmospheric variables and national atmospheric circulation patterns. An attempt is made to quantify these relationships using statistical models and tests in order that prediction of discharge with climate change could be made using local weather forecasts and national circulation indices. The nature of the subglacial drainage system is also investigated with particular focus on its structural evolution from summer to autumn. It is found that shortwave radiation, wind speed and relative humidity are consistently the most important variables in prediction of discharge and that wind speed is most important during summer while air temperature is most important in autumn. It is concluded that the importance of precipitation is greater than indicated by the results which were influenced by covariance in the records. A multiple regression model for summer discharge predicts up to 85% of variation in the proglacial stream hydrograph and for autumn 60%. Low overall energy inputs during autumn result in lesser sensitivity of discharge to variation in environmental conditions. It is concluded that the subglacial drainage system is highly arborescent over both summer and autumn and that little, if any, evolution occurs through these seasons. A qualitative relationship is established between discharge production at Brewster Glacier proglacial stream and national atmospheric circulation indices; highest average discharge occurs during northwesterly cyclonic conditions, when the turbulent heat fluxes and precipitation dominate discharge production, and lowest during southeasterly anticyclones when total energy inputs are low. The multiple regression models are used to estimate changes in discharge over the next 20 years given predicted changes in air temperature and precipitation, and it is found that the models lack the sensitivity required for accurate predictions.</p>


Sign in / Sign up

Export Citation Format

Share Document