scholarly journals A modified ensemble Kalman particle filter for non-Gaussian systems with nonlinear measurement functions

2015 ◽  
Vol 7 (1) ◽  
pp. 50-66 ◽  
Author(s):  
Zheqi Shen ◽  
Youmin Tang
Keyword(s):  
2013 ◽  
Vol 683 ◽  
pp. 824-827
Author(s):  
Tian Ding Chen ◽  
Chao Lu ◽  
Jian Hu

With the development of science and technology, target tracking was applied to many aspects of people's life, such as missile navigation, tanks localization, the plot monitoring system, robot field operation. Particle filter method dealing with the nonlinear and non-Gaussian system was widely used due to the complexity of the actual environment. This paper uses the resampling technology to reduce the particle degradation appeared in our test. Meanwhile, it compared particle filter with Kalman filter to observe their accuracy .The experiment results show that particle filter is more suitable for complex scene, so particle filter is more practical and feasible on target tracking.


2019 ◽  
Vol 148 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Takuya Kawabata ◽  
Genta Ueno

Abstract Non-Gaussian probability density functions (PDFs) in convection initiation (CI) and development were investigated using a particle filter with a storm-scale numerical prediction model and an adaptive observation error estimator (NHM-RPF). An observing system simulation experiment (OSSE) was conducted with a 90-min assimilation period and 1000 particles at a 2-km grid spacing. Pseudosurface observations of potential temperature (PT), winds, water vapor (QV), and pseudoradar observations of rainwater (QR) in the lower troposphere were created in a nature run that simulated a well-developed cumulonimbus. The results of the OSSE (PF) show a significant improvement in comparison to ensemble simulations without any observations. The Gaussianity of the PDFs for PF in the CI area was evaluated using the Bayesian information criterion to compare goodness-of-fit of Gaussian, two-Gaussian mixture, and histogram models. The PDFs are strongly non-Gaussian when NHM-RPF produces diverse particles over the CI period. The non-Gaussian PDF of the updraft is followed by the upper-bounded PDF of the relative humidity, which produces non-Gaussian PDFs of QV and PT. The PDFs of the cloud water and QR are strongly non-Gaussian throughout the experimental period. We conclude that the non-Gaussianity of the CI originated from the non-Gaussianity of the updraft. In addition, we show that the adaptive observation error estimator significantly contributes to the stability of PF and the robustness to many observations.


2011 ◽  
Vol 130-134 ◽  
pp. 3311-3315
Author(s):  
Nai Gao Jin ◽  
Fei Mo Li ◽  
Zhao Xing Li

A CUDA accelerated Quasi-Monte Carlo Gaussian particle filter (QMC-GPF) is proposed to deal with real-time non-linear non-Gaussian problems. GPF is especially suitable for parallel implementation as a result of the elimination of resampling step. QMC-GPF is an efficient counterpart of GPF using QMC sampling method instead of MC. Since particles generated by QMC method provides the best-possible distribution in the sampling space, QMC-GPF can make more accurate estimation with the same number of particles compared with traditional particle filter. Experimental results show that our GPU implementation of QMC-GPF can achieve the maximum speedup ratio of 95 on NVIDIA GeForce GTX 460.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yang Wan ◽  
Shouyong Wang ◽  
Xing Qin

In order to solve the tracking problem of radar maneuvering target in nonlinear system model and non-Gaussian noise background, this paper puts forward one interacting multiple model (IMM) iterated extended particle filter algorithm (IMM-IEHPF). The algorithm makes use of multiple modes to model the target motion form to track any maneuvering target and each mode uses iterated extended particle filter (IEHPF) to deal with the state estimation problem of nonlinear non-Gaussian system. IEHPF is an improved particle filter algorithm, which utilizes iterated extended filter (IEHF) to obtain the mean value and covariance of each particle and describes importance density function as a combination of Gaussian distribution. Then according to the function, draw particles to approximate the state posteriori density of each mode. Due to the high filter accuracy of IEHF and the adaptation of system noise with arbitrary distribution as well as strong robustness, the importance density function generated by this method is more approximate to the true sate posteriori density. Finally, a numerical example is included to illustrate the effectiveness of the proposed methods.


2018 ◽  
Vol 25 (4) ◽  
pp. 765-807 ◽  
Author(s):  
Alban Farchi ◽  
Marc Bocquet

Abstract. Particle filtering is a generic weighted ensemble data assimilation method based on sequential importance sampling, suited for nonlinear and non-Gaussian filtering problems. Unless the number of ensemble members scales exponentially with the problem size, particle filter (PF) algorithms experience weight degeneracy. This phenomenon is a manifestation of the curse of dimensionality that prevents the use of PF methods for high-dimensional data assimilation. The use of local analyses to counteract the curse of dimensionality was suggested early in the development of PF algorithms. However, implementing localisation in the PF is a challenge, because there is no simple and yet consistent way of gluing together locally updated particles across domains. In this article, we review the ideas related to localisation and the PF in the geosciences. We introduce a generic and theoretical classification of local particle filter (LPF) algorithms, with an emphasis on the advantages and drawbacks of each category. Alongside the classification, we suggest practical solutions to the difficulties of local particle filtering, which lead to new implementations and improvements in the design of LPF algorithms. The LPF algorithms are systematically tested and compared using twin experiments with the one-dimensional Lorenz 40-variables model and with a two-dimensional barotropic vorticity model. The results illustrate the advantages of using the optimal transport theory to design the local analysis. With reasonable ensemble sizes, the best LPF algorithms yield data assimilation scores comparable to those of typical ensemble Kalman filter algorithms, even for a mildly nonlinear system.


2011 ◽  
Vol 64 (2) ◽  
pp. 327-340 ◽  
Author(s):  
Jong Ki Lee ◽  
Christopher Jekeli

The existence of Unexploded Ordnance (UXO) is a serious environmental hazard, especially in areas being converted from military to civilian use. The detection and discrimination performance of UXO detectors depends on the sensor technology as well as on the processing methodology that inverts the data to infer UXO. The detection systems, typically electro-magnetic induction (EMI) devices, require very accurate positioning (or geolocation) in order to discriminate candidate UXO from non-hazardous items. For this paper, a hand-held geolocation system based on a tactical-grade IMU, such as the HG1900, was tested in the laboratory over a small, metre-square area in sweep and swing modes. A camera position system was used to emulate GPS or alternative ground-based external ranging systems that control positioning errors. The proposed integration algorithm is a combination of linear filtering (Extended Kalman Filter) and nonlinear, also non-Gaussian filtering (Unscented Particle Filter) in the form of the Rao-Blackwellized Particle Filter (RBPF). The test results show that the position accuracy was improved by applying nonlinear filter-based smoothing techniques in both the straight and curved sections of the sweep and swing trajectories.


Sign in / Sign up

Export Citation Format

Share Document