scholarly journals Horizontal surface velocity and strain patterns near thrust and normal faults during the earthquake cycle: The importance of viscoelastic relaxation in the lower crust and implications for interpreting geodetic data

Tectonics ◽  
2015 ◽  
Vol 34 (4) ◽  
pp. 731-752 ◽  
Author(s):  
Andrea Hampel ◽  
Ralf Hetzel
Author(s):  
Luca Menegon ◽  
Lucy Campbell ◽  
Neil Mancktelow ◽  
Alfredo Camacho ◽  
Sebastian Wex ◽  
...  

This paper discusses the results of field-based geological investigations of exhumed rocks exposed in the Musgrave Ranges (Central Australia) and in Nusfjord (Lofoten, Norway) that preserve evidence for lower continental crustal earthquakes with focal depths of approximately 25–40 km. These studies have established that deformation of the dry lower continental crust is characterized by a cyclic interplay between viscous creep (mylonitization) and brittle, seismic slip associated with the formation of pseudotachylytes (a solidified melt produced during seismic slip along a fault in silicate rocks). Seismic slip triggers rheological weakening and a transition to viscous creep, which may be already active during the immediate post-seismic deformation along faults initially characterized by frictional melting and wall-rock damage. The cyclical interplay between seismic slip and viscous creep implies transient oscillations in stress and strain rate, which are preserved in the shear zone microstructure. In both localities, the spatial distribution of pseudotachylytes is consistent with a local (deep) source for the transient high stresses required to generate earthquakes in the lower crust. This deep source is the result of localized stress amplification in dry and strong materials generated at the contacts with ductile shear zones, producing multiple generations of pseudotachylyte over geological time. This implies that both the short- and the long-term rheological evolution of the dry lower crust typical of continental interiors is controlled by earthquake cycle deformation. This article is part of a discussion meeting issue ‘Understanding earthquakes using the geological record’.


Author(s):  
Fred F. Pollitz ◽  
Charles W. Wicks ◽  
Jerry L. Svarc ◽  
Eleyne Phillips ◽  
Benjamin A. Brooks ◽  
...  

ABSTRACT The 2019 Ridgecrest, California, earthquake sequence involved predominantly right-lateral strike slip on a northwest–southeast-trending subvertical fault in the 6 July M 7.1 mainshock, preceded by left-lateral strike slip on a northeast–southwest-trending subvertical fault in the 4 July M 6.4 foreshock. To characterize the postseismic deformation, we assemble displacements measured by Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar. The geodetic measurements illuminate vigorous postseismic deformation for at least 21 months following the earthquake sequence. The postseismic transient deformation is particularly well constrained from survey-mode GPS (sGPS) in the epicentral region carried out during the weeks after the mainshock. We interpret these observations with mechanical models including afterslip and viscoelastic relaxation of the lower crust and mantle asthenosphere. During the first 21 months, up to several centimeters of horizontal motions are measured at continuous GPS and sGPS sites, with amplitude that diminishes slowly with distance from the mainshock rupture, suggestive of deeper afterslip or viscoelastic relaxation. We find that although afterslip involving right-lateral strike slip along the mainshock fault traces and their deeper extensions reach a few decimeters, most postseismic deformation is attributable to viscoelastic relaxation of the lower crust and mantle. Within the Basin and Range crust and mantle, we infer a transient lower crust viscosity several times that of the mantle asthenosphere. The transient mantle asthenosphere viscosity is ∼1.3×1017  Pa s, and the adjacent Central Valley transient mantle asthenosphere viscosity is ∼7×1017  Pa s, about five times higher and consistent with an asymmetry in postseismic horizontal motions across the mainshock surface rupture.


2020 ◽  
Author(s):  
Alessandro La Rosa ◽  
Cecile Doubre ◽  
Carolina Pagli ◽  
Federico Sani ◽  
Giacomo Corti ◽  
...  

<p>During the evolution of continental rift systems, extension focuses along on-axis magmatic segments while extensional structures along the rift margins seem to progressively become inactive. However, how strain is partitioned between rift axes and rift margins is still poorly understood. The Afar Rift is the locus of extension between Nubia, Arabia and Somalia and is believed to record the latest stages of rifting and incipient continental break-up. The Afar rift axis is bounded at its western margin by a seismically active system of normal faults separating the Afar depression from the Ethiopian Plateau through a series of large bounding faults and marginal grabens. Although most of the extension in Afar is currently accommodated on-axis, several earthquakes with Mw > 5.0 occurred in the past decades on the Western Afar Margin (WAM). Here we analysed the most recent M<sub>w</sub> 5.2 earthquake on the WAM on 24 March 2018 and the following seismic sequence using data recorded by a temporary seismic network, set up between 2017 and 2018. We located 800 events from the 20 March to the 30 April 2018 using twenty-three local seismic stations and a new velocity model for the WAM based on a new receiver function study. Preliminary results show that seismicity during the 2018 event focused at mid-to-low crustal depths (from ~15 km to ~35 km) along west-dipping fault planes. Shallower upper crustal earthquakes also occurred on west-dipping fault planes.</p><p>The hypocentral location of the mainshock has also been investigated using InSAR. We processed four independent interferograms using Sentinel-1 data acquired from a descending track. None of them shows any significant surface deformation, confirming the large depth of the hypocenters. Furthermore, we tested possible ranges of depth by producing a series of forward models assuming fault located at progressively increasing depths and corresponding to a Mw 5.2 earthquake. Our models show that surface deformations are < 1 cm at depths greater than 15 km, in agreement with our hypocentral depth of 18 km for the main shock estimated from seismic data. </p><p>Our seismicity observations of slip along west-dipping faults show that deformation across the WAM is currently accommodated by antithetic faulting, as suggested by structural geology studies. Lower crustal earthquakes might occur in a strong lower crust due to the presence of mafic lower crust and/or be induced by migrating fluids such as magma or CO<sup>2</sup>.</p>


2018 ◽  
Vol 53 ◽  
pp. 20-40 ◽  
Author(s):  
Camille Clerc ◽  
Jean-Claude Ringenbach ◽  
Laurent Jolivet ◽  
Jean-François Ballard

Impact ◽  
2019 ◽  
Vol 2019 (9) ◽  
pp. 6-8
Author(s):  
Luca Menegon ◽  
Iain Stewart

Understanding the short- and long-term mechanical behaviour of the lower crust is of fundamental importance when trying to understand the earthquake cycle and related hazard along active fault zones. In some regions some 20% of intracontinental earthquakes of magnitude > 5 nucleates in the lower crust at depth of 30-40 km. For example, a significant proportion of seismicity in the Himalaya, as well as aftershocks associated with the destructive 2001 Bhuj earthquake in India, nucleated in the granulitic lower crust of the Indian shield. Earthquakes in the continental interiors are often devastating and, over the past century, have killed significantly more people than earthquakes that occurred at plate boundaries. Thus, a thorough understanding of the earthquake cycle in intracontinental settings is essential. This requires knowledge of the mechanical behaviour and of the strength (by which Earth scientists commonly mean the maximum stress that rocks can sustain before deforming) of the lower crust. The most common conceptual model of the strength of the continental crust predicts a strong, seismogenic brittle upper crust (where the base of the seismogenic layer is typically considered to be at depth of 10-15 km), and a weak, viscous, aseismic lower crust. This model has been recently questioned by the finding that the lower crust can be seismic and, therefore, mechanically strong. The question arises, how thick is the seismogenic layer in the crust? Answering this question is crucial to determine the potential hazard caused by large earthquakes, which are also generally the deepest.<br/> Our limited knowledge of the mechanical behaviour of the lower crust is largely due to the lower crust itself being poorly accessible for direct geological observations, so that most of our knowledge derives from indirect geophysical measurements (like the distribution of earthquakes). There are only a few well-exposed large sections of exhumed continental lower crust in the world. One of these is located in the Lofoten islands (northern Norway), which were exhumed from their original deep crustal position during the opening of the North Atlantic Ocean.<br/> We propose an integrated, multi-disciplinary study of a network of brittle-viscous shear zones (i.e. zones of localized intense deformation of geological materials) from Lofoten, which records episodic rapid slip events (earthquakes) alternating with long-lasting aseismic creep. The study will link structural geology (analysis of geological faults and shear zones), petrology (analysis of the composition and textures of rocks), geochemistry (detailed chemical characterization of rocks and minerals) and experimental rock deformation (to reproduce in the lab under controlled conditions the deformation processes operative in the deep Earth's crust). This integrated dataset will provide a novel, clear picture of the mechanical behaviour of the continental lower crust during the earthquake cycle. Our direct geological and experimental observations will be tested against geophysical observations of currently active seismic deformation. The cumulative results of the projects will shed light on the currently poorly constrained mechanical behaviour of the lower crust during the earthquake cycle, and therefore on the sequence of inter-seismic slip (the period of slow accumulation of elastic deformation along a fault), co-seismic slip (the sudden rupture along a fault that is the earthquake) and post-seismic slip (the immediate period after an earthquake when the crust and the fault adjust to the modified state of crustal stress caused by an earthquake). This will greatly extend and complement existing efforts by the scientific community to understand and interpret the mechanical behaviour of rocks during the earthquake cycle recorded in the lower crust and the related hazard, and will provide key input for numerical models of continental dynamics.


2020 ◽  
Author(s):  
Han-Ao Li ◽  
in-Gen Dai ◽  
Le-Tian Zhang ◽  
Ya-Lin Li ◽  
Guang-Hao Ha ◽  
...  

&lt;p&gt;The N-S trends normal faults are widespread through the whole Tibetan Plateau. It records key information for the growth and uplift of the Tibetan Plateau. Numerous models are provided to explain the causes of rifting in the Tibetan Plateau based on the low-temperature thermochronology&lt;sup&gt;1&lt;/sup&gt;. With the developments of the geophysical and magmatic geochemistry methods and its applications on the Tibetan Plateau, we could gain more profound understanding on the sphere structure of the Tibetan Plateau. This would give us more clues on how the deep process affect the formation and evolution of the shallow normal faults. However, few researchers pay attention on this and the relationship between the surface evolution and deep process of these faults. In order to solve these puzzles, we collected the published thermochronology data, magnetotelluric data, faults-related ultrapotassic, potassic and the adakitic rocks ages and present-day GPS measurements. We find that the distribution of the N-S trends normal faults are closely related to the weak zones in the middle to lower crust (15-50 km) revealed by the magmatism and magnetotelluric data&lt;sup&gt;2&lt;/sup&gt;. Besides, the present-day GPS data show that the E-W extension rates match well with the eastward movements speeds interior Tibetan Plateau&lt;sup&gt;3&lt;/sup&gt;. Combined with the thermochronology data (25-4 Ma), we concluded that 1.The weak zone in the middle to lower crust influence the developments and evolution of the N-S trends normal faults. 2. The material eastward flow enhance the N-S normal faults developments. 3. The timing of the middle to lower crustal flow may begin in the Miocene.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Key words:&lt;/strong&gt; N-S trends normal faults; Thermochronology; Magnetotellurics; Magmatism; GPS Measurements; middle to lower crustal flow&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References:&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;sup&gt;1&lt;/sup&gt;Lee, J., Hager, C., Wallis, S.R., Stockli, D.F., Whitehouse, M.J., Aoya, M. and Wang, Y., 2011. Middle to Late Miocene Extremely Rapid Exhumation and Thermal Reequilibration in the Kung Co Rift, Southern Tibet. Tectonics, 30(2).&lt;/p&gt;&lt;p&gt;&lt;sup&gt;2&lt;/sup&gt;Pang, Y., Zhang, H., Gerya, T.V., Liao, J., Cheng, H. and Shi, Y., 2018. The Mechanism and Dynamics of N-S Rifting in Southern Tibet: Insight from 3-D Thermomechanical Modeling. Journal of Geophysical Research: Solid Earth.&lt;/p&gt;&lt;p&gt;&lt;sup&gt;3&lt;/sup&gt;Zhang, P.-Z., Shen, Z., Wang, M., Gan, W., B&amp;#252;rgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Hanrong, S. and Xinzhao, Y., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgements:&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;We thank Shi-Ying Xu, Xu Han, Bo-Rong Liu for collecting data. Special thanks are given to Dr. Guang-Hao Ha and Professors Jin-Gen Dai, Le-Tian Zhang&amp;#65292;Ya-Lin Li and Cheng-Shan Wang for many critical and constructive comments.&lt;/p&gt;


2020 ◽  
Vol 117 (40) ◽  
pp. 24742-24747
Author(s):  
Danian Shi ◽  
Simon L. Klemperer ◽  
Jianyu Shi ◽  
Zhenhan Wu ◽  
Wenjin Zhao

The deep structure of the continental collision between India and Asia and whether India’s lower crust is underplated beneath Tibet or subducted into the mantle remain controversial. It is also unknown whether the active normal faults that facilitate orogen-parallel extension of Tibetan upper crust continue into the lower crust and upper mantle. Our receiver-function images collected parallel to the India–Tibet collision zone show the 20-km-thick Indian lower crust that underplates Tibet at 88.5–92°E beneath the Yarlung-Zangbo suture is essentially absent in the vicinity of the Cona-Sangri and Pumqu-Xainza grabens, demonstrating a clear link between upper-crustal and lower-crustal thinning. Satellite gravity data that covary with the thickness of Indian lower crust are consistent with the lower crust being only ∼30% eclogitized so gravitationally stable. Deep earthquakes coincide with Moho offsets and with lateral thinning of the Indian lower crust near the bottom of the partially eclogitized Indian lower crust, suggesting the Indian lower crust is locally foundering or stoping into the mantle. Loss of Indian lower crust by these means implies gravitational instability that can result from localized rapid eclogitization enabled by dehydration reactions in weakly hydrous mafic granulites or by volatile-rich asthenospheric upwelling directly beneath the two grabens. We propose that two competing processes, plateau formation by underplating and continental loss by foundering or stoping, are simultaneously operating beneath the collision zone.


Sign in / Sign up

Export Citation Format

Share Document