Testing a simple model of gas bubble dynamics in porous media

2015 ◽  
Vol 51 (2) ◽  
pp. 1036-1049 ◽  
Author(s):  
Jorge A. Ramirez ◽  
Andy J. Baird ◽  
Tom J. Coulthard ◽  
J. Michael Waddington
Author(s):  
Higor Veiga ◽  
Edgar Ofuchi ◽  
Henrique Stel ◽  
Ernesto Mancilla ◽  
Dalton Bertoldi ◽  
...  
Keyword(s):  

SPE Journal ◽  
2010 ◽  
Vol 15 (01) ◽  
pp. 171-183 ◽  
Author(s):  
Q.. Chen ◽  
M.G.. G. Gerritsen ◽  
A.R.. R. Kovscek

Summary The gas-mobility-control aspects of foamed gas make it highly applicable for improved oil recovery. Gas-bubble size, often referred to as foam texture, determines gas-flow behavior in porous media. A population-balance model has been developed previously for modeling foam texture and flow in porous media. The model incorporates pore-level mechanisms of foam-bubble generation, coalescence, and transport. Here, we propose a simplified foam model to reduce computational costs. The formulation is based on the assumption of local equilibrium of foam generation and coalescence and is applicable to high- and low-quality foams. The proposed foam model is compatible with a standard reservoir simulator. It provides a potentially useful, efficient tool to predict foam flows accurately at the field scale for designing and managing foamed-gas applications. There are three main contributions of this paper. First, foam-displacement experiments in a linear sandstone core are conducted. A visualization cell is employed to measure the effluent foam-bubble sizes for a transient flow as well as to estimate the in-situ foam-bubble sizes along the length of the core during steady-state flow. These appear to be the first measurements of foam-bubble texture in the entrance region of a core. Additionally, the evolution of aqueous-phase saturation is monitored using X-ray computed tomography (CT), and the pressure profile is measured by a series of pressure taps. Second, the population-balance representation of foam generation by gas-bubble snap-off is modified to extend the capability of the population-balance approach to predict foam-flow behaviors in both the so-called high-quality and low-quality regimes. Third, a simplified population-balance model is developed and implemented with the local-equilibrium approximation. Good agreement is found between the experimental results and the predictions of the simplified model, with a minor mismatch in the entrance region.


1976 ◽  
Vol 98 (1) ◽  
pp. 5-11 ◽  
Author(s):  
W. J. Minkowycz ◽  
D. M. France ◽  
R. M. Singer

Conservation equations are derived for the motion of a small inert gas bubble in a large flowing liquid-gas solution subjected to large thermal gradients. Terms which are of the second order of magnitude under less severe and steady-state conditions are retained, thus resulting in an expanded form of the Rayleigh equation. The bubble dynamics is a function of opposing mechanisms tending to increase or decrease bubble volume while being transported with the solution. Diffusion of inert gas between the bubble and the solution is one of the most important of these mechanisms included in the analysis. The analytical model is applied to an argon gas bubble flowing in a weak solution of argon gas in liquid sodium. Calculations are performed for these fluids under conditions typical of normal and abnormal operation of a liquid metal fast breeder reactor (LMFBR) core and the resulting bubble radius, internal gas pressure, and mass of inert gas are presented in each case. An important result obtained indicates that inert gas bubbles reaching the core inlet of an LMFBR will always grow as they traverse the core under normal and extreme abnormal conditions and that the rate of growth is quite small in all cases.


2008 ◽  
Author(s):  
C. H. Li

An experimental investigation was conducted to study the influence of the sphere material and size on the bubble generation, growth, and detachment on nucleate pool boiling heat transfer in two different sphere-packed porous media, copper sphere and glass sphere at the same size of 3 mm diameter, respectively. By measuring the heating surface temperatures and visualizing the bubble dynamics over a wide range of heat flux, an effort was made to find the relationship between the normalized bubble dynamics process and the factors of sphere material and size. By comparing the experimental results of two different sphere material porous media, the interfacial heat and mass transport will be analyzed to provide the information how the bubble generation, growth, detachment and the liquid replenished process were influence by the liquid/copper and liquid/glass interfaces in different size porous media.


2020 ◽  
Vol 209 ◽  
pp. 104667
Author(s):  
Malú Grave ◽  
José J. Camata ◽  
Alvaro L.G.A. Coutinho

Sign in / Sign up

Export Citation Format

Share Document