scholarly journals No long-term trends in p CO2 despite increasing organic carbon concentrations in boreal lakes, streams, and rivers

2017 ◽  
Vol 31 (6) ◽  
pp. 985-995 ◽  
Author(s):  
Anna C. Nydahl ◽  
Marcus B. Wallin ◽  
Gesa A. Weyhenmeyer
Water ◽  
2014 ◽  
Vol 6 (5) ◽  
pp. 1360-1418 ◽  
Author(s):  
Montserrat Filella ◽  
Juan Rodríguez-Murillo

Soil Research ◽  
2002 ◽  
Vol 40 (1) ◽  
pp. 65 ◽  
Author(s):  
W. E. Cotching ◽  
J. Cooper ◽  
L. A. Sparrow ◽  
B. E. McCorkell ◽  
W. Rowley

Attributes of 15 Tasmanian dermosols were assessed using field and laboratory techniques to determine changes associated with 3 typical forms of agricultural management: long-term pasture, cropping with shallow tillage using discs and tines, and cropping (including potatoes) with more rigorous and deeper tillage including deep ripping and powered implements. Soil organic carbon in the surface 75 mm was 7.0% under long-term pasture compared with 4.3% and 4.2% in cropped paddocks. Microbial biomass carbon concentrations were 217 mg/kg, 161 mg/kg, and 139 mg/kg, respectively. These differences were negatively correlated with the number of years cropped. Greater bulk densities were found in the surface layer of cropped paddocks but these were not associated with increased penetration resistance or decreased infiltration rate and are unlikely to impede root growth. Long-term pasture paddocks showed stronger structural development and had smaller clods than cropped paddocks. Vane shear strength and penetration resistance were lower in cropped paddocks than under long-term pasture. Many soil attributes showed no significant differences associated with management. Including potatoes in the rotation did not appear to affect these dermosols, which indicates a degree of robustness in these soils. clay loams, organic carbon, soil strength, aggregate stability, land management, cropping.


2014 ◽  
Vol 119 (5) ◽  
pp. 836-847 ◽  
Author(s):  
Marie-Eve Ferland ◽  
Yves T. Prairie ◽  
Cristian Teodoru ◽  
Paul A. del Giorgio

2014 ◽  
Vol 11 (5) ◽  
pp. 7079-7111 ◽  
Author(s):  
M. Schwalm ◽  
J. Zeitz

Abstract. The rising export of dissolved organic carbon (DOC) from peatlands during the last 20 years is of great environmental concern, as DOC harms drinking water quality and diminishes the carbon storage of peatlands. Lack of knowledge particularly exists for fens. The aim of our study was to determine DOC concentrations at an agriculturally used fen and a rewetted fen throughout the year. We measured DOC concentrations in ditch water of these fens in 2011 and 2012. Furthermore, discharge measurements were condcucted to detect DOC export. Overall DOC concentrations at our agriculturally used site and at our rewetted site were 35 mg L−1 and 26 mg L−1 (median), respectively. The maximum DOC concentration at our agriculturally used site was twice as high as at the rewetted site (134 mg L−1 vs. 61 mg L−1). Annual DOC export was calculated for the rewetted site, amounting to 200 kg C ha−1 on average. Our results suggest that rewetting of degraded fens reduces DOC export in the long-term, while agricultural use of fens leads to enhanced decomposition and thus, elevates DOC export.


Sign in / Sign up

Export Citation Format

Share Document