scholarly journals Dissolved organic carbon concentrations vary with season and land use – investigations from two fens in Northeastern Germany over two years

2014 ◽  
Vol 11 (5) ◽  
pp. 7079-7111 ◽  
Author(s):  
M. Schwalm ◽  
J. Zeitz

Abstract. The rising export of dissolved organic carbon (DOC) from peatlands during the last 20 years is of great environmental concern, as DOC harms drinking water quality and diminishes the carbon storage of peatlands. Lack of knowledge particularly exists for fens. The aim of our study was to determine DOC concentrations at an agriculturally used fen and a rewetted fen throughout the year. We measured DOC concentrations in ditch water of these fens in 2011 and 2012. Furthermore, discharge measurements were condcucted to detect DOC export. Overall DOC concentrations at our agriculturally used site and at our rewetted site were 35 mg L−1 and 26 mg L−1 (median), respectively. The maximum DOC concentration at our agriculturally used site was twice as high as at the rewetted site (134 mg L−1 vs. 61 mg L−1). Annual DOC export was calculated for the rewetted site, amounting to 200 kg C ha−1 on average. Our results suggest that rewetting of degraded fens reduces DOC export in the long-term, while agricultural use of fens leads to enhanced decomposition and thus, elevates DOC export.

2009 ◽  
Vol 40 (2-3) ◽  
pp. 291-305 ◽  
Author(s):  
M. N. Futter ◽  
M. Forsius ◽  
M. Holmberg ◽  
M. Starr

Concentrations of dissolved organic carbon (DOC) are increasing in many surface waters across Europe. Two of the main mechanisms proposed to explain this increase are declines in sulfate (SO42−) deposition and changes in climate. Many of the reductions in SO42− have already occurred; climate change related effects are occurring now and will continue in the future. This paper presents the first application of a new version of INCA-C, the Integrated Catchments model for Carbon, which simulates the effects of both climate and SO42− deposition on surface water DOC concentration ([DOC]). The model was applied to Valkea-Kotinen, a small headwater catchment in Finland, where it was able to simulate present-day (1990–2007) trends in [DOC] in the lake and catchment outflow as functions of observed climate and European Monitoring and Evaluation Programme (EMEP)-modelled SO42− deposition. Using a parameter set derived from a present-day calibration, the model was run with two climate scenarios from the Special Report on Emissions Scenarios (SRES) and three EMEP deposition scenarios to simulate surface water [DOC] between 1960 and 2100. The results show that much of the historical increase in [DOC] can be explained as a result of historical declines in SO42− deposition and that surface water [DOC] will continue to increase as climate changes.


2012 ◽  
Vol 9 (1) ◽  
pp. 209-251 ◽  
Author(s):  
M. I. Stutter ◽  
S. M. Dunn ◽  
D. G. Lumsdon

Abstract. Better knowledge of spatial and temporal delivery of dissolved organic Carbon (DOC) in small catchments is required to understand the mechanisms behind reported long-term changes in C fluxes from some peatlands. We monitored two storms with contrasting seasons and antecedent conditions in a small upland UK moorland catchment. We examined DOC concentrations and specific UV absorbance (SUVA at 285 nm), together with solute concentrations required to undertake end member mixing analyses to define dominant flow paths contributing to streamflow. This was combined with laboratory soil-solution equilibrations. We aimed to resolve how seasonal biogeochemical processing of DOC and flowpath changes in organo-mineral soils combine to affect DOC exported via the stream. An August storm following a dry period gave maximum DOC concentration of 10 mg l−1. Small DOC:DON ratios (16–28) and SUVA (2.7–3.6 l mg−1 m−1) was attributed to filtration of aromatic compounds associated with up to 53% B horizon flow contributions. This selective filtration of high SUVA DOC was reproduced in the experimental batch equilibration system. For a November storm, wetter antecedent soil conditions led to enhanced soil connectivity with the stream and seven times greater DOC stream-load (maximum concentration 16 mg l−1). This storm had a 63% O horizon flow contribution at its peak, limited B horizon buffering and consequently more aromatic DOC (SUVA 3.9–4.5 l mg−1 m−1 and DOC:DON ratio 35–43). We suggest that simple mixing of waters from different flow paths cannot alone explain the differences in DOC compositions between August and November and biogeochemical processing of DOC is required to fully explain the observed stream DOC dynamics. This is in contrast to other studies proposing hydrological controls and provides evidence that DOC biogeochemistry must be incorporated in modelling to predict the impacts of changes in DOC delivery to aquatic systems.


2012 ◽  
Vol 9 (6) ◽  
pp. 2159-2175 ◽  
Author(s):  
M. I. Stutter ◽  
S. M. Dunn ◽  
D. G. Lumsdon

Abstract. Better knowledge of spatial and temporal delivery of dissolved organic carbon (DOC) in small catchments is required to understand the mechanisms behind reported long-term changes in C fluxes from some peatlands. We monitored two storms with contrasting seasons and antecedent conditions in a small upland UK moorland catchment. We examined DOC concentrations and specific UV absorbance (SUVA at 285 nm), together with solute concentrations required to undertake end-member mixing analyses to define dominant flow paths contributing to streamflow. This was combined with laboratory soil-solution equilibrations. We aimed to resolve how seasonal biogeochemical processing of DOC and flowpath changes in organo-mineral soils combine to affect DOC exported via the stream. An August storm following a dry period gave maximum DOC concentration of 10 mg l−1. Small DOC:DON ratios (16–28) and SUVA (2.7–3.6 l mg−1 m−1) was attributed to filtration of aromatic compounds associated with up to 53% B horizon flow contributions. This selective filtration of high SUVA DOC was reproduced in the experimental batch equilibration system. For a November storm, wetter antecedent soil conditions led to enhanced soil connectivity with the stream and seven times greater DOC stream-load (maximum concentration 16 mg l−1). This storm had a 63% O horizon flow contribution at its peak, limited B horizon buffering and consequently more aromatic DOC (SUVA 3.9–4.5 l mg−1 m−1 and DOC:DON ratio 35–43). We suggest that simple mixing of waters from different flow paths cannot alone explain the differences in DOC compositions between August and November and biogeochemical processing of DOC is required to fully explain the observed stream DOC dynamics. This preliminary evidence is in contrast to other studies proposing hydrological controls on the nature of DOC delivered to streams. Although our study is based only on two storms of very different hydrological and biogeochemical periods, this should promote wider study of DOC biogeochemical alteration in headwaters so that this be better incorporated in modelling to predict the impacts of changes in DOC delivery to, and fate in, aquatic systems.


2017 ◽  
Author(s):  
Tsung-Yu Lee ◽  
Li-Chin Lee ◽  
Jr-Chuan Huang ◽  
Shih-Hao Jien ◽  
Thomas Hein ◽  
...  

Abstract. Small mountainous rivers (SMRs) are important conveyors of the land-to-ocean organic carbon export. However, relatively few studies have focused on dissolved organic carbon (DOC) compared to particulate organic carbon. In a long-term project (2002 to 2014), stream DOC was monitored in three neighboring subtropical small mountainous rivers of Taiwan. The objective was to relate DOC concentrations to water discharge and to quantify DOC flux during typhoon and non-typhoon periods. Seasonal fluctuations of DOC concentrations were closely correlated with air temperature at all sampling stations. During non-typhoon periods, increasing water discharge led to decreasing DOC concentrations due to a dilution effect. However, during typhoon periods, DOC concentrations increased with some lead time along the hydrograph and reached the annual maximum which likely sources from a significant input of litter and upper soil layers. The mean DOC concentration of the studied systems (


2016 ◽  
Vol 67 (9) ◽  
pp. 1338 ◽  
Author(s):  
Ann-Marie Rohlfs ◽  
Simon M. Mitrovic ◽  
Simon Williams ◽  
Daniel Coleman

Although tributary inputs can accelerate the recovery of many physical and chemical gradients below large reservoirs, their contribution to the dissolved organic carbon (DOC) regime in regulated rivers remains poorly studied. In some regulated tributaries, flow volumes can be manipulated, potentially influencing DOC supply to the main stem. The present study examines how tributary water diversion affects DOC supply to a snowmelt river regulated by large reservoirs. DOC concentration was measured at tributary and main stem sites, and tributary DOC export was estimated under different tributary flow-diversion scenarios. Significant, positive correlations between DOC concentration and discharge were absent directly below the dam, but were present in the unregulated tributary, and re-emerged below the tributary confluence. Irrespective of water-diversion practices, tributary in-flows reconnected the regulated main stem to a more variable DOC regime driven by catchment flushing processes. However, tributary water diversion dampened the tributary signal by reducing DOC pulse frequency and total DOC export to the regulated river. These aspects of the DOC regime may influence basal resource availability and ecosystem functioning in the regulated main stem. The present study illustrates how an ecologically valuable tributary function can be addressed and quantified to guide the management and rehabilitation of a regulated river system.


2019 ◽  
Author(s):  
Linhua Wang ◽  
Haw Yen ◽  
Xinhui E ◽  
Liding Chen ◽  
Yafeng Wang

Abstract. Dissolved organic carbon (DOC) transported by surface runoff has been identified as an important role of the global carbon cycle. Despite there being many studies on DOC concentration and flux, but little information is available in semi-arid catchments of the Loess Plateau Region (LPR). The primary goal of this study was to quantify DOC exported from a sequence of runoff events during the concentrated rainfall season. In addition, factors that affect DOC export from a small headwater catchment will be investigated accordingly. Runoff discharge and DOC concentration were monitored at the outlet of the Yangjuangou catchment in Yanan, Shaanxi Province, China. The results showed that DOC concentration was highly variable (1.91–34.70 mg L−1), with event-based DOC concentrations ranging from 4.08 to 15.66 mg L−1. The mean monthly DOC flux loading from the catchment was 94.73–110.17 kg km−2 from June to September, while the event-based DOC flux ranged from 0.08 to 2.81 kg km−2. Intra-events of rainfall amount and runoff discharge led to event-based/monthly differences in DOC concentration and flux. Hysteresis analysis showed a nonlinear relationship between DOC concentration and discharge in the runoff process. Our results highlighted the advantages of high-frequency monitoring for DOC export and indicated that DOC export from a catchment is largely influenced by the interaction of rainfall and antecedent conditions for a rainfall event. Engineering and scientists can take advantage of the derived results to better develop advanced field monitoring work. In addition, release of DOC runoff can take quantified during hydrological and biogeochemical processes within catchments in LPR.


2008 ◽  
Vol 65 (5) ◽  
pp. 796-808 ◽  
Author(s):  
M Catherine Eimers ◽  
Jim Buttle ◽  
Shaun A Watmough

Dissolved organic carbon (DOC) fluxes at eight headwater basins in south-central Ontario were strongly related to seasonal streamflow, and extreme events contributed to both interannual and intercatchment variability. Six catchments with high stream DOC and greater peatland coverage exhibited a different seasonal pattern of DOC concentration compared with two catchments with low DOC and less wetland influence. In wetland-dominated catchments, DOC concentrations decreased during fall wet-up and spring melt, and because of the dominance of the spring melt period in annual budgets, variations in spring flow explained 39%–48% of the intervariability in DOC concentration. Significant increases in average DOC concentration between 1980 and 2001 at all six wetland-dominated catchments were driven by relatively high DOC concentrations in the latter years of record, consistent with low spring flow in these years, and were not translated into greater DOC export to downstream lakes. Localized rainstorms in summer and fall resulted in differences in DOC export among adjacent catchments, and a single fall storm in September 1998 was only detected at one of six catchments draining into Harp Lake but accounted for one-quarter of the annual tributary DOC load to the lake.


Sign in / Sign up

Export Citation Format

Share Document