scholarly journals Arc magmatism associated with steep subduction: Insights from trace element and Sr-Nd-Hf-B isotope systematics

Author(s):  
Yunying Zhang ◽  
Chao Yuan ◽  
Min Sun ◽  
Xiaoping Long ◽  
Yunpeng Wang ◽  
...  
2021 ◽  
Vol 43 (4) ◽  
pp. 50-55
Author(s):  
L.V. SHUMLYANSKYY ◽  
V. KAMENETSKY ◽  
B.V. BORODYNYA

Results of a study of U-Pb and Hf isotope systematics and trace element concentrations in five zircon crystals separated from the Devonian Petrivske kimberlite are reported in the paper. Four zircons have yielded Paleoproterozoic and Archean ages, while one zircon grain gave a Devonian age of 383.6±4.4 Ma (weighted mean 206Pb/238U age). The Precambrian zircons have been derived from terrigenous rocks of the Mykolaivka Suite that is cut by kimberlite, or directly from the Precambrian rock complexes that constitute continental crust in the East Azov. The Devonian zircon crystal has the U-Pb age that corresponds to the age of kimberlite emplacement. It is 14 m.y. younger than zircon megacrysts found in the Novolaspa kimberlite pipe in the same area. In addition, Petrivske zircon is richer in trace elements than its counterparts from the Novolaspa pipe. Petrivske and Novolaspa zircons crystallized from two different proto-kimberlite melts, whereas the process of kimberlite formation was very complex and possibly included several episodes of formation of proto-kimberlite melts, separated by extended (over 10 M.y.) periods of time.


Lithos ◽  
2017 ◽  
Vol 290-291 ◽  
pp. 48-59 ◽  
Author(s):  
Marco G. Malusà ◽  
Jiangang Wang ◽  
Eduardo Garzanti ◽  
Zhi-Chao Liu ◽  
Igor M. Villa ◽  
...  

2011 ◽  
Vol 163 (6) ◽  
pp. 1011-1031 ◽  
Author(s):  
Federica Schiavi ◽  
Katsura Kobayashi ◽  
Eizo Nakamura ◽  
Massimo Tiepolo ◽  
Riccardo Vannucci

2021 ◽  
Vol 13 (9) ◽  
Author(s):  
Daniel Berger ◽  
Michael Brauns ◽  
Gerhard Brügmann ◽  
Ernst Pernicka ◽  
Nicole Lockhoff

AbstractGold parting enabled the production of very pure gold for various purposes from the sixth century BC onwards, but analytical proof of this pyrotechnical process is difficult. We describe a new analytical approach for the identification of purified gold combining silver and copper isotopic with trace element analyses. Parting experiments were performed with gold-silver-copper alloys using the classical salt cementation process to investigate potential silver and copper isotope fractionation and changes in trace element concentrations. In addition, we provide the first comprehensive dataset of silver isotope ratios of archaeological gold objects from the Mediterranean and Central Europe to test whether or not gold refining can be identified on the basis of isotope systematics. The results show that very heavy silver and copper isotopic compositions are clear evidence for parted gold, but that the application of copper isotopes might be limited.


2016 ◽  
Author(s):  
Joshua R. Hernandez ◽  
◽  
Bethany G. Rysak ◽  
Kathleen DeGraaff Surpless ◽  
Andrew P. Barth ◽  
...  

2017 ◽  
Author(s):  
Jonathan S. Miller ◽  
◽  
Jade Star Lackey ◽  
Callie Sendek ◽  
Gareth R. Davies

Geosphere ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 1058-1081
Author(s):  
Calvin G. Barnes ◽  
Melanie A. Barnes

Abstract Arc magmatism was widespread in the Cordillera of North America during Middle Jurassic time. The predominant representative of this arc magmatism in the Klamath Mountain province is the western Hayfork terrane (WHT). This terrane is primarily metasedimentary, consisting mainly of crystal-lithic arenite, argillitic sediments and lahar deposits, rare lavas, and sparse quartz-rich arenite. Because lavas are rare, petrologic study using bulk-rock compositions is restricted to analysis of cobbles in lahar deposits. Moreover, the WHT underwent greenschist-facies regional metamorphism with consequent modification of bulk-rock compositions. However, many of the sandstones preserve igneous clinopyroxene and calcic amphibole, which were phenocrysts in the original volcanic rocks. Major- and trace-element compositions of the magmatic pyroxene and amphibole permit reconstruction of the range of rock types eroded from the arc, specifically scant basalt, volumetrically dominant basaltic andesite and andesite, and smaller but significant amounts of dacite and rhyodacite. Eruptive temperatures reached ∼1180 °C and may have been as low as ∼800 °C on the basis of pyroxene and amphibole thermometry, with most eruptive temperatures >1000 °C. On the basis of augite compositions, WHT magmatism is divided into two suites. One features high-Mg augite with high abundances of Cr and Sr, high Sr/Y and Nd/Yb values, and low Y and heavy rare-earth elements (REE). These compositions are typical of high-Mg andesite and dacite suites in which garnet is a residual mineral, most probably in a metasomatized upper mantle setting. The other suite contains augite with lower Sr, Sr/Y, and Nd/Yb; these features are typical of normal calc-alkaline magmas. Augite from a coeval pluton emplaced inboard of the western Hayfork outcrop belt is similar to augite from the low-Sr group of WHT samples. In contrast, augite from the Ironside Mountain pluton, previously considered the plutonic equivalent of WHT sediments, is Fe-rich, with low Cr and Sr and relatively high Zr and REE. Previous suggestions that the Ironside Mountain pluton is correlative with the WHT are not supported by these data. The magmatic diversity of the WHT is typical of the modern Aleutian and Cascade arcs, among others, and could reflect subduction of relatively young oceanic lithosphere or fragmentation of the subduction slab. Although we favor the former setting, present data cannot rule out the latter. The presence of scant quartz-rich sedimentary rocks within the predominantly volcanogenic WHT is consistent with deposition as a sedimentary apron associated with a west-facing magmatic arc with late-stage input from cratonal sources. The results of this study indicate that detailed petrographic study of arc-derived sedimentary rocks, including major- and trace-element analysis of preserved magmatic phases, yields information about magmatic affinities, processes, and temperatures.


Sign in / Sign up

Export Citation Format

Share Document