scholarly journals Will the Tibetan Plateau warming depend on elevation in the future?

2016 ◽  
Vol 121 (8) ◽  
pp. 3969-3978 ◽  
Author(s):  
Donglin Guo ◽  
Entao Yu ◽  
Huijun Wang
2019 ◽  
Vol 32 (20) ◽  
pp. 7037-7053
Author(s):  
Hongwen Zhang ◽  
Yanhong Gao ◽  
Jianwei Xu ◽  
Yu Xu ◽  
Yingsha Jiang

Abstract To meet the requirement of high-resolution datasets for many applications, a dynamical downscaling approach using a regional climate model (the WRF Model) driven by a global climate model (CCSM4) has been adopted. This study focuses on projections of future moisture flux changes over the Tibetan Plateau (TP). First, the downscaling results for the historical period (1980–2005) are evaluated for precipitation P, evaporation E, and precipitation minus evaporation P − E against Global Land Data Assimilation System (GLDAS) data. The mechanism of P − E changes is analyzed by decomposition into dynamic, thermodynamic, and transient eddy components. Whether the historical period changes and mechanisms continue into the future (2010–2100) is investigated using the WRF and CCSM model projections under the RCP4.5 and RCP8.5 scenarios. Compared with coarse-resolution forcing, downscaling was found to better reproduce the historical spatial patterns and seasonal mean of annual average P, E, and P − E over the TP. WRF projects a diverse spatial variation of P − E changes, with an increase in the northern TP and a decrease in the southern TP, compared with the uniform increase in CCSM. The dynamic component dominates P − E changes for the historical period in both the CCSM and WRF projections. In the future, however, the thermodynamic component in CCSM dominates P − E changes under RCP4.5 and RCP8.5 from the near-term (2010–39) to the long-term (2070–99) future. Unlike the CCSM projections, the WRF projections reproduce the mechanism seen in the historical period—that is, the dynamic component dominates P − E changes. Furthermore, future P − E changes in the dynamical downscaling are less sensitive to warming than its coarse-resolution forcing.


2020 ◽  
Vol 33 (12) ◽  
pp. 5141-5154
Author(s):  
Qinglong You ◽  
Fangying Wu ◽  
Hongguo Wang ◽  
Zhihong Jiang ◽  
Nick Pepin ◽  
...  

AbstractSnow water equivalent (SWE) is a critical parameter for characterizing snowpack, which has a direct influence on the hydrological cycle, especially over high terrain. In this study, SWE from 18 coupled model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is validated against the Canadian Sea Ice and Snow Evolution Network (CanSISE) SWE. The model simulations under RCP8.5 and RCP4.5 are employed to investigate projected changes in spring/winter SWE over the Tibetan Plateau (TP) under global warming of 1.5° and 2°C. Most CMIP5 models overestimate the CanSISE SWE. A decrease in mean spring/winter SWE for both RCPs over most regions of the TP is predicted in the future, with most significant reductions over the western TP, consistent with pronounced warming in that region. This is supported by strong positive correlations between SWE and mean temperature in the future in both seasons. Compared with the preindustrial period, spring/winter SWE over the TP under global warming of 1.5° and 2°C will reduce significantly, at faster rates than over China as a whole and the Northern Hemisphere. SWE changes over the TP do not show a simple elevation dependency under global warming of 1.5° and 2°C, with maximum changes in the elevation band of 4000–4500 m. Moreover, there are also strong positive correlations between projected SWE and historical mean SWE, indicating that the initial conditions of SWE are an important parameter of future SWE under specific global warming scenarios.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3178
Author(s):  
Yuan Liu ◽  
Qianyang Wang ◽  
Xiaolei Yao ◽  
Qi Jiang ◽  
Jingshan Yu ◽  
...  

Reference evapotranspiration (ET0) is a key factor in the hydrological cycle and energy cycle. In the context of rapid climate change, studying the dynamic changes in ET0 in the Tibetan Plateau (TP) is of great significance for water resource management in Asian countries. This study uses the Penman–Monteith formula to calculate the daily ET0 of the TP and subsequently uses the Mann–Kendall (MK) test, cumulative anomaly curve, and sliding t-test to identify abrupt change points. Morlet wavelet analysis and the Hurst index based on rescaled range analysis (R/S) are utilized to predict the future trends of ET0. The Spearman correlation coefficient is used to explore the relationship between ET0 changes and other climate factors. The results show that the ET0 on the TP exhibited an increasing trend from 1961 to 2017, with the most significant increase occurring in winter; an abrupt change to a tendency to decrease occurred in 1988, and another abrupt change to a tendency to increase occurred in 2005. Spatially, the ET0 of the TP shows an increasing trend from east to west. The change trend of the ET0 on the TP will not be sustainable into the future. In addition, the mean temperature has the greatest impact on the ET0 changes in the TP.


2021 ◽  
Author(s):  
Lingxin Huang ◽  
Wei Huang ◽  
Song Feng ◽  
Kun Yang ◽  
Fahu Chen

<p>Based on the Köppen–Trewartha climate classification schemes, we examined the shifts in terrestrial climate regimes in the Tibetan Plateau (TP) by analyzing the WorldClim high-resolution (~25 km) downscaled climate dataset for the mid-Holocene (MH, 6,000 cal yr BP), the present day (PD, 1970-2000), and in the future (2041-2060, represented by 2050). The climate types of the PD are compared to those of the MH and the future. Our aim was to place ongoing anthropogenic climatic and environmental changes in the TP within the context of changes due to natural forcing in the three selected warm period, and to determine the differences in the spatial expression of ecosystem among these selected periods. The results indicate that the climate of the TP will continue to warm in the future. The intensity of the South Asian monsoon may increase in the future which will affect precipitation in the southern TP. There will be a significant decrease in the areas covered by polar climate, while the spatial coverage of the other climate types will increase. A tropical climate which did not exist in the MH and PD will develop in some areas and the shrinking polar climate indicates that the cryosphere of the TP will change significantly, which in turn may cause the climate system to pass a tipping point and cause irreversible consequences. The large changes in the climate regimes of the TP suggest that there will be a widespread redistribution of the surface vegetation and significant changes in plant species distributions by 2050. Compared to changes in precipitation, increasing temperature is the dominant factor that driving the change of climate types in the TP. The warming alone may cause the climate types to change in more than 20% areas by 2050.</p>


2020 ◽  
Author(s):  
Manoj Joshi ◽  
Benjamin Mills

<p>Over very long timescales, mountain building or orogenesis is associated with increased weathering, the drawdown of atmospheric CO<sub>2</sub>, and global cooling. Considering the Phanerozoic glaciation in particular, a multimillion‐year delay appears to exist between peaks in low‐latitude mountain uplift and the maximum extent of glaciation, implying a complex causal relationship between them. We show, using a combination of physical climate/circulation modelling and geochemical modelling approaches, that global silicate weathering can be modulated by orogeny in three distinct phases. High, young mountain ranges experience preferential precipitation and the highest erosion. As mountain ranges denude, precipitation decreases, but runoff temperature rises, sharply increasing chemical weathering potential and CO<sub>2</sub> drawdown. In the final phase, erosion and weathering are throttled by flatter topography. We hypothesise that orogeny acts as a capacitor in the climate system, granting the potential for intense transient CO<sub>2</sub> drawdown when mountain ranges are denuded. Intriguingly, depending on the future evolution of the Tibetan Plateau, the mechanism suggests such a scenario potentially happening 10–50 × 10<sup>6</sup> years in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document