Changes of Köppen–Trewartha climate types in the Tibetan Plateau during the mid-Holocene, present day, and the future based on high-resolution datasets

Author(s):  
Lingxin Huang ◽  
Wei Huang ◽  
Song Feng ◽  
Kun Yang ◽  
Fahu Chen

<p>Based on the Köppen–Trewartha climate classification schemes, we examined the shifts in terrestrial climate regimes in the Tibetan Plateau (TP) by analyzing the WorldClim high-resolution (~25 km) downscaled climate dataset for the mid-Holocene (MH, 6,000 cal yr BP), the present day (PD, 1970-2000), and in the future (2041-2060, represented by 2050). The climate types of the PD are compared to those of the MH and the future. Our aim was to place ongoing anthropogenic climatic and environmental changes in the TP within the context of changes due to natural forcing in the three selected warm period, and to determine the differences in the spatial expression of ecosystem among these selected periods. The results indicate that the climate of the TP will continue to warm in the future. The intensity of the South Asian monsoon may increase in the future which will affect precipitation in the southern TP. There will be a significant decrease in the areas covered by polar climate, while the spatial coverage of the other climate types will increase. A tropical climate which did not exist in the MH and PD will develop in some areas and the shrinking polar climate indicates that the cryosphere of the TP will change significantly, which in turn may cause the climate system to pass a tipping point and cause irreversible consequences. The large changes in the climate regimes of the TP suggest that there will be a widespread redistribution of the surface vegetation and significant changes in plant species distributions by 2050. Compared to changes in precipitation, increasing temperature is the dominant factor that driving the change of climate types in the TP. The warming alone may cause the climate types to change in more than 20% areas by 2050.</p>

2015 ◽  
Vol 83 (3) ◽  
pp. 469-478 ◽  
Author(s):  
Eike F. Rades ◽  
Sumiko Tsukamoto ◽  
Manfred Frechen ◽  
Qiang Xu ◽  
Lin Ding

Many lakes on the Tibetan Plateau exhibit strandplains with a series of beach ridges extending high above the current lake levels. These beach ridges mark former lake highstands and therefore dating their formation allows the reconstruction of lake-level histories and environmental changes. In this study, we establish a lake-level chronology of Tangra Yum Co (fifth largest lake on the Tibetan Plateau) based on luminescence dating of feldspar from 17 beach-ridge samples. The samples were collected from two strandplains southeast and north of the lake and range in elevation from the current shore to 140 m above the present lake. Using a modified post-infrared IRSL protocol at 170°C we successfully minimised the anomalous fading in the feldspar IRSL signal, and obtained reliable dating results. The luminescence ages indicate three different stages of lake-level decline during the Holocene: (1) a phase of rapid decline (~ 50 m) from ~ 6.4 to ~ 4.5 ka, (2) a period of slow decline between ~ 4.5 and ~ 2.0 ka (~ 20 m), and (3) a fast decline by 70 m between ~ 2 ka and today. Our findings suggest a link between a decrease in monsoonal activity and lake-level decline since the early Holocene.


2020 ◽  
Vol 9 (1) ◽  
pp. 231-250
Author(s):  
Birendra Prasad Sharma ◽  
Subash Adhikari ◽  
Ganesh Paudel ◽  
Namita Paudel Adhikari

Microorganisms, as successive members of the food web, play a major role in biological processes. They are found in environments ranging from extremely hot to harsh cold temperatures. Thus, the study of bacterial communities in various ecosystems is of great concern around the world. The glacier is one of the parts of the cryosphere, which is the key component and sensitive indicator of climatic and environmental changes. A glacial ecosystem is a habitat for various microorganisms, i.e., autotrophic and heterotrophic. Different physicochemical parameters like temperature, pH, electrical conductivity, the input of nutrient concentration, precipitation, ions concentrations, etc. influence the microbial diversity in the glacial ecosystem for their metabolic processes. Successive studies of bacterial communities in the Himalayan glacial ecosystem are reliable proxies to know the relationships between microbial biodiversity and climate change since the Himalayan glaciers are free from anthropogenic activities. After the study of the relevant literature, it is clear that the researches. have been carried out in the Polar Regions, and the Tibetan plateau mainly focused on the glacial ecosystem. This review concluded that Proteobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Verrucomicrobia, and Actinobacteria were the most dominant bacterial phyla via 16S rRNA clone libraries and Illumina MiSeq. Alter in landscapes, nutrient cycles, exposure of light, shifting on the concentration of different elements, glacier retreats were the major components for survival strength of dominant bacterial phyla. However, limited studies on the glacial ecosystem of the Himalayas have been published. Thus, the study of bacterial abundance, diversity, and community in the Himalayas will help plug this research gap.


2019 ◽  
Vol 32 (20) ◽  
pp. 7037-7053
Author(s):  
Hongwen Zhang ◽  
Yanhong Gao ◽  
Jianwei Xu ◽  
Yu Xu ◽  
Yingsha Jiang

Abstract To meet the requirement of high-resolution datasets for many applications, a dynamical downscaling approach using a regional climate model (the WRF Model) driven by a global climate model (CCSM4) has been adopted. This study focuses on projections of future moisture flux changes over the Tibetan Plateau (TP). First, the downscaling results for the historical period (1980–2005) are evaluated for precipitation P, evaporation E, and precipitation minus evaporation P − E against Global Land Data Assimilation System (GLDAS) data. The mechanism of P − E changes is analyzed by decomposition into dynamic, thermodynamic, and transient eddy components. Whether the historical period changes and mechanisms continue into the future (2010–2100) is investigated using the WRF and CCSM model projections under the RCP4.5 and RCP8.5 scenarios. Compared with coarse-resolution forcing, downscaling was found to better reproduce the historical spatial patterns and seasonal mean of annual average P, E, and P − E over the TP. WRF projects a diverse spatial variation of P − E changes, with an increase in the northern TP and a decrease in the southern TP, compared with the uniform increase in CCSM. The dynamic component dominates P − E changes for the historical period in both the CCSM and WRF projections. In the future, however, the thermodynamic component in CCSM dominates P − E changes under RCP4.5 and RCP8.5 from the near-term (2010–39) to the long-term (2070–99) future. Unlike the CCSM projections, the WRF projections reproduce the mechanism seen in the historical period—that is, the dynamic component dominates P − E changes. Furthermore, future P − E changes in the dynamical downscaling are less sensitive to warming than its coarse-resolution forcing.


2019 ◽  
Vol 51 (2) ◽  
pp. 272-289 ◽  
Author(s):  
Yueguan Zhang ◽  
Zhenchun Hao ◽  
Chong-Yu Xu ◽  
Xide Lai

Abstract Located in the Tibetan Plateau, the upstream regions of the Mekong River (UM) and the Salween River (US) are very sensitive to climate change. The ‘VIC-glacier‘ model, which links a degree-day glacier algorithm with variable infiltration capacity (VIC) model, was employed and the model parameters were calibrated on observed streamflow, glacier mass balance and MODIS snowcover data. Results indicate that: (1) glacier-melt runoff exhibits a significant increase in both areas by the Mann–Kendall test. Snowmelt runoff shows an increasing trend in the UM, while the US is characterized by a decreasing tendency. In the UM, the snowmelt runoff peak shifts from June in the baseline period 1964–1990 to May for both the 1990s and 2000s; (2) rainfall runoff was considered as the first dominant factor driving changes of river discharge, which could be responsible for over 84% in total runoff trend over the two regions. The glacial runoff illustrates the secondary influence on the total runoff tendency; (3) although the hydrological regime is rain dominated in these two basins, the glacier compensation effect in these regions is obvious, especially in dry years.


2016 ◽  
Vol 121 (8) ◽  
pp. 3969-3978 ◽  
Author(s):  
Donglin Guo ◽  
Entao Yu ◽  
Huijun Wang

2020 ◽  
Author(s):  
Arjen P. Stroeven ◽  
Ramona A.A. Schneider ◽  
Robin Blomdin ◽  
Natacha Gribenski ◽  
Marc W. Caffee ◽  
...  

<p>Paleoglaciological data is a crucial source of information towards insightful paleoclimate reconstructions by providing vital boundary conditions for regional and global climate models. In this context, the Third Pole Environment is considered a key region because it is highly sensitive to global climate change and its many glaciers constitute a diminishing but critical supply of freshwater to downstream communities in SE Asia. Despite its importance, extents of past glaciation on the Tibetan Plateau remain poorly documented or controversial largely because of the lack of well define glacial chronostratigraphies and reconstructions of former glacier extent. This study contributes to a better documentation of the extent and improved resolution of the timing of past glaciations on the southeastern margin of the Tibetan Plateau. We deploy a high-resolution TanDEM-X Digital Elevation Model (12 m resolution) to produce maps of glacial and proglacial fluvial landforms in unprecedented detail. Geomorphological and sedimentological field observations complement the mapping while cosmogenic nuclide exposure dating of quartz samples from boulders on end moraines detail the timing of local glacier expansion. Additionally, samples for optically stimulated luminescence dating were taken from extensive and distinct terraces located in pull-apart basins downstream of the end moraines to determine their formation time. We compare this new dataset with new and published electron spin resonance ages from terraces. Temporal coherence between the different chronometers strengthens the geochronological record while divergence highlights limitations in the applicability of the chronometers to glacial research or in our conceptual understanding of landscape changes in tectonic regions. Results highlight our current understanding of paleoglaciation, landscape development, and paleoclimate on the SE Tibetan Plateau.</p>


2014 ◽  
Vol 81 (3) ◽  
pp. 400-423 ◽  
Author(s):  
Jijun Li ◽  
Xiaomin Fang ◽  
Chunhui Song ◽  
Baotian Pan ◽  
Yuzhen Ma ◽  
...  

AbstractThe way in which the NE Tibetan Plateau uplifted and its impact on climatic change are crucial to understanding the evolution of the Tibetan Plateau and the development of the present geomorphology and climate of Central and East Asia. This paper is not a comprehensive review of current thinking but instead synthesises our past decades of work together with a number of new findings. The dating of Late Cenozoic basin sediments and the tectonic geomorphology of the NE Tibetan Plateau demonstrates that the rapid persistent rise of this plateau began ~8 ± 1 Ma followed by stepwise accelerated rise at ~3.6 Ma, 2.6 Ma, 1.8–1.7 Ma, 1.2–0.6 Ma and 0.15 Ma. The Yellow River basin developed at ~1.7 Ma and evolved to its present pattern through stepwise backward-expansion toward its source area in response to the stepwise uplift of the plateau. High-resolution multi-climatic proxy records from the basins and terrace sediments indicate a persistent stepwise accelerated enhancement of the East Asian winter monsoon and drying of the Asian interior coupled with the episodic tectonic uplift since ~8 Ma and later also with the global cooling since ~3.2 Ma, suggesting a major role for tectonic forcing of the cooling.


Sign in / Sign up

Export Citation Format

Share Document