Impact of high-resolution sea surface temperature and urban data on estimations of surface air temperature in a regional climate

2016 ◽  
Vol 121 (18) ◽  
pp. 10,486-10,504 ◽  
Author(s):  
Sachiho A. Adachi ◽  
Fujio Kimura ◽  
Hiroshi G. Takahashi ◽  
Masayuki Hara ◽  
Xieyao Ma ◽  
...  
2013 ◽  
Vol 13 (10) ◽  
pp. 5243-5253 ◽  
Author(s):  
C. A. Varotsos ◽  
M. N. Efstathiou ◽  
A. P. Cracknell

Abstract. The annual and the monthly mean values of the land-surface air temperature anomalies from 1880–2011, over both hemispheres, are used to investigate the existence of long-range correlations in their temporal evolution. The analytical tool employed is the detrended fluctuation analysis, which eliminates the noise of the non-stationarities that characterize the land-surface air temperature anomalies in both hemispheres. The reliability of the results obtained from this tool (e.g., power-law scaling) is investigated, especially for large scales, by using error bounds statistics, the autocorrelation function (e.g., rejection of its exponential decay) and the method of local slopes (e.g., their constancy in a sufficient range). The main finding is that deviations of one sign of the land-surface air temperature anomalies in both hemispheres are generally followed by deviations with the same sign at different time intervals. In other words, the land-surface air temperature anomalies exhibit persistent behaviour, i.e., deviations tend to keep the same sign. Taking into account our earlier study, according to which the land and sea surface temperature anomalies exhibit scaling behaviour in the Northern and Southern Hemisphere, we conclude that the difference between the scaling exponents mainly stems from the sea surface temperature, which exhibits a stronger memory in the Southern than in the Northern Hemisphere. Moreover, the variability of the scaling exponents of the annual mean values of the land-surface air temperature anomalies versus latitude shows an increasing trend from the low latitudes to polar regions, starting from the classical random walk (white noise) over the tropics. There is a gradual increase of the scaling exponent from low to high latitudes (which is stronger over the Southern Hemisphere).


2012 ◽  
Vol 37 (1) ◽  
pp. 29-35
Author(s):  
Andrew C. Comrie ◽  
Gregory J. McCabe

Mean global surface air temperature (SAT) and sea surface temperature (SST) display substantial variability on timescales ranging from annual to multi-decadal. We review the key recent literature on connections between global SAT and SST variability. Although individual ocean influences on SAT have been recognized, the combined contributions of worldwide SST variability on the global SAT signal have not been clearly identified in observed data. We analyze these relations using principal components of detrended SST, and find that removing the underlying combined annual, decadal, and multi-decadal SST variability from the SAT time series reveals a nearly monotonic global warming trend in SAT since about 1900.


2012 ◽  
Vol 12 (6) ◽  
pp. 14727-14746
Author(s):  
C. A. Varotsos ◽  
M. N. Efstathiou

Abstract. The annual and the monthly mean values of the land-surface air temperature anomalies during 1880–2011, over both hemispheres, are used to investigate the existence of long-range correlations in their temporal march. The analytical tool employed is the detrended fluctuation analysis which eliminates the noise of the non-stationarities that characterize the land-surface air temperature anomalies in both hemispheres. The main result obtained is that deviations of one sign of the land-surface air temperature anomalies in both hemispheres are generally followed by deviations with the same sign at different time intervals. In other words the land-surface air temperature anomalies exhibit persistent behaviour i.e., deviations tend to keep the same sign. Specifically, the scaling exponents of the annual (monthly) mean land-surface air temperature anomalies, α = 0.65 (0.73–0.75), are roughly equal in both hemispheres approaching to that of the global annual (monthly) mean land-surface air temperature anomalies, α =0.68 (0.80). Taking into account our earlier study according to which the land and sea surface temperature anomalies obey scaling exponents α =0.78 and α = 0.89 in the Northern and Southern Hemisphere, respectively, we conclude that the difference between the scaling exponents in both sea and land contributions to the surface air temperature stems mainly from the sea surface temperature, which exhibits stronger memory in the Southern than in the Northern Hemisphere. This conclusion may be attributed to the fact that oceans have the greatest capacity to store heat, being thus able to regulate the temperature on land with less pronounced persistence. Moreover, the variability of the scaling-exponents of the annual mean values of the land-surface air temperature anomalies versus latitude shows an increasing trend from the low to polar regions starting from the classical random walk (white noise) over tropics. The gradual increase of the scaling exponent from the low to high latitudes (which is stronger over the Southern Hemisphere) could be associated with the poleward increase in climate sensitivity predicted by the global climate models. In this context, the persistence in the land-surface air temperature enhances the feasibility of its reliable long-term forecast, which is very important for various climate applications.


2010 ◽  
Vol 27 (10) ◽  
pp. 1769-1776 ◽  
Author(s):  
Darren L. Jackson ◽  
Gary A. Wick

Abstract A 10-m air temperature (Ta) retrieval using Advanced Microwave Sounding Unit A (AMSU-A) and satellite-derived sea surface temperature (Ts) observations is presented. The multivariable linear regression retrieval uses AMSU-A brightness temperatures from the 52.8- and 53.6-GHz channels and satellite-derived daily sea surface temperatures to determine Ta. A regression error of 0.83°C using 841 matched satellite and ship observations demonstrates a high-quality fit of the satellite observations with in situ Ta. Validation of the retrieval using independent International Comprehensive Ocean–Atmosphere Dataset (ICOADS) ship and buoy observations results in a bias of −0.21°C and root-mean-square (RMS) differences of 1.55°C. A comparison with previous satellite-based Ta retrievals indicates less bias and significantly smaller RMS differences for the new retrieval. Regional biases inherent to previous retrievals are reduced in several oceanic regions using the new Ta retrieval. Satellite-derived Ts–Ta data were found to agree well with ICOADS buoy data and were significantly improved from previous retrievals.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jeonghyeon Choi ◽  
Jeonghoon Lee ◽  
Sangdan Kim

In this study, the effects of surface air temperature (SAT) and sea surface temperature (SST) changes on typhoon rainfall maximization are analysed. Based on the numerically reproduced Typhoon Maemi, this study tried to maximize the typhoon-induced rainfall by increasing the amount of saturated water vapour in the atmosphere and the amount of water vapour entering the typhoon. Using the Weather Research and Forecasting (WRF) model, which is one of the regional climate models (RCMs), the rainfall simulated by WRF while increasing the SAT and SST to various sizes at initial conditions and boundary conditions of the model was analysed. As a result of the simulated typhoon rainfall, the spatial distribution of total rainfall depth on the land due to the increase combination of SAT and SST showed a wide variety without showing a certain pattern. This is attributed to the geographical location of the Korean peninsula, which is a peninsula between the continent and the ocean. In other words, under certain conditions, typhoons may drop most of the rainfall on the southern sea of the peninsula before landing on the peninsula. For instance, the 6-hour duration maximum precipitation (MP) in Busan Metropolitan City was 472.1 mm when the SST increased by 2.0°C. However, when the SST increased by 4.0°C, the MP was found to be 395.3 mm, despite the further increase in SST. This indicates that the MP at a particular area and the increase in temperature do not have a linear relationship. Therefore, in order to maximize typhoon rainfall, it is necessary to repeat the numerical experiment on various conditions and search for the combination of SAT and SST increase which is most suitable for the target typhoon.


Sign in / Sign up

Export Citation Format

Share Document