scholarly journals Direct determination of the air-sea CO2 gas transfer velocity in Arctic sea ice regions

2017 ◽  
Vol 44 (8) ◽  
pp. 3770-3778 ◽  
Author(s):  
John Prytherch ◽  
Ian M. Brooks ◽  
Patrick M. Crill ◽  
Brett F. Thornton ◽  
Dominic J. Salisbury ◽  
...  
1997 ◽  
Vol 102 (C2) ◽  
pp. 3331-3343 ◽  
Author(s):  
Afshan Alam ◽  
Judith A. Curry

2014 ◽  
Vol 111 (9) ◽  
pp. 3322-3326 ◽  
Author(s):  
Kristina Pistone ◽  
Ian Eisenman ◽  
V. Ramanathan
Keyword(s):  
Sea Ice ◽  

Author(s):  
Minjoo Choi ◽  
Stein Ove Erikstad ◽  
Sören Ehlers

For the design of an ice-going ship, determining its ice-capability is one of the key design aspects. Excessive ice-capability increases the ship’s acquisition cost and reduces its deadweight capacity. On the other hand, less ice-capability limits its serviceable area and it decreases the probability for the ship to complete its given/expected missions successfully. The ice conditions, which the ship would encounter during its operations, are dependent on its route planning, and they become a basis for the determination of its ice-capability. For the design of an ice-going ship, which is going to be operated under constant operational conditions, static route analysis or use of historical voyage data is sufficient to estimate its required ice-capability. However, if the operational conditions change dynamically, like the Arctic sea ice conditions, a dynamic route analysis is needed. Otherwise, the required ice-capability tends to be over-estimated by the static analysis. Sea ice conditions in the Arctic change dynamically from hour-to-hour. In addition, the forecast of its operational conditions has a high uncertainty due to lack of understanding of the Arctic sea ice. Thus, for the design of a ship for Arctic operation, we carry out transit simulations in a dynamic and stochastic manner in this paper and estimate the required ice-capability from the simulations’ result.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


Sign in / Sign up

Export Citation Format

Share Document