An approach to reliability modeling and availability analysis of a solar electric vehicle with standby plug‐in facility

Author(s):  
Bipul Kumar Talukdar ◽  
Bimal Chandra Deka ◽  
Arup Kumar Goswami
Author(s):  
Hamed Sabouhi ◽  
Ali Abbaspour ◽  
Mahmud Fotuhi-Firuzabad ◽  
Payman Dehghanian

Author(s):  
Xiao-Jian Yi ◽  
Balbir Singh Dhillon ◽  
Jian Shi ◽  
Hui-Na Mu ◽  
Zhong Zhang

This paper presents a new approach for the reliability analysis of vehicle systems by considering typical characteristics based on goal-oriented methodology. First, solutions are proposed for vehicle systems with multiple fault modes, a standby structure at any position, a multiple-input closed-loop feedback link, multiple functions, and multiple conditions for the goal-oriented method. Then, a two-level goal-oriented model and the new rules of goal-oriented operation for such vehicle systems are proposed. Furthermore, the quantitative method and the qualitative method are improved. In addition, the analysis process for these vehicle systems based on the new goal-oriented method is formulated. Finally, this new goal-oriented methodology is applied in the dynamic availability analysis and qualitative analysis of the power-shift steering transmission for a heavy military vehicle. In order to verify the feasibility, the advantages, and the correctness of the new goal-oriented methodology, the results are compared with those from fault tree analysis and Monte Carlo simulations. In general, this study not only improves the theory of the goal-oriented method and widens the application of the goal-oriented method but also provides a new reliability analysis method for such vehicle systems. In addition, the analysis process of the new goal-oriented method shows that the goal-oriented method has advantages in system reliability modeling and system reliability analysis for vehicle systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Bing Wang ◽  
Guangdong Tian ◽  
Yanping Liang ◽  
Tiangang Qiang

Performing reliability analysis of electric vehicle motor has an important impact on its safety. To do so, this paper proposes its reliability modeling and evaluation issues of electric vehicle motor by using fault tree (FT) and extended stochastic Petri nets (ESPN). Based on the concepts of FT and ESPN, an FT based ESPN model for reliability analysis is obtained. In addition, the reliability calculation method is introduced and this work designs a hybrid intelligent algorithm integrating stochastic simulation and NN, namely, NN based simulation algorithm, to solve it. Finally, taking an electric vehicle motor as an example, its reliability modeling and evaluation issues are analyzed. The results illustrate the proposed models and the effectiveness of proposed algorithms. Moreover, the results reported in this work could be useful for the designers of electric vehicle motor, particularly, in the process of redesigning the electric vehicle motor and scheduling its reliability growth plan.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 431-438
Author(s):  
Jian Liu ◽  
Lihui Wang ◽  
Zhengqi Tian

The nonlinearity of the electric vehicle DC charging equipment and the complexity of the charging environment lead to the complex and changeable DC charging signal of the electric vehicle. It is urgent to study the distortion signal recognition method suitable for the electric vehicle DC charging. Focusing on the characteristics of fundamental and ripple in DC charging signal, the Kalman filter algorithm is used to establish the matrix model, and the state variable method is introduced into the filter algorithm to track the parameter state, and the amplitude and phase of the fundamental waves and each secondary ripple are identified; In view of the time-varying characteristics of the unsteady and abrupt signal in the DC charging signal, the stratification and threshold parameters of the wavelet transform are corrected, and a multi-resolution method is established to identify and separate the unsteady and abrupt signals. Identification method of DC charging distortion signal of electric vehicle based on Kalman/modified wavelet transform is used to decompose and identify the signal characteristics of the whole charging process. Experiment results demonstrate that the algorithm can accurately identify ripple, sudden change and unsteady wave during charging. It has higher signal to noise ratio and lower mean root mean square error.


Author(s):  
Totska Olesia ◽  
Glovatsky Anastasia

The purpose of the article is to plan a project of an electric vehicle technicalassistance point. the methodology of the study is to use the critical path method.the scientific novelty of the obtained results is that the article describes the practicalaspects of project planning of the creation of an electric vehicle technical assistancepoint. In particular, the tasks of the project are described, labor, material and financialresources necessary for its realization are specified. conclusions. The implementationof the developed project will effectively manage the content, time and resources ofthe project of the creation of an electric vehicle technical assistance point.


Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


Sign in / Sign up

Export Citation Format

Share Document