Advanced control to damp power oscillations with VSC‐HVDC links inserted in meshed AC grids

Author(s):  
Yankai Xing ◽  
Elkhatib Kamal ◽  
Bogdan Marinescu ◽  
Florent Xavier
2011 ◽  
Vol 383-390 ◽  
pp. 1124-1130
Author(s):  
Min Xu ◽  
Lin Zhu ◽  
Ze Xiang Cai

This paper proposes a unified method for inter-area power oscillations which is the key to solve coordination problems caused by different mathematical models and control theories. Firstly, the unified model, breaking the constraints of the network topology, component and the precise extents in the process, is established based on global signals. Secondly, making use of the structural feature of the unified system model, it combines advanced control theory to resolve the problem of parameter uncertainty and model error. Finally, the control law is effectively derived with backstepping method. The simulation results in Matlab show the validity of the proposed method.


2011 ◽  
Author(s):  
Fabricio Garelli ◽  
Ricardo J. Mantz ◽  
Hernán De Battista
Keyword(s):  

2000 ◽  
Vol 41 (4-5) ◽  
pp. 177-184 ◽  
Author(s):  
K.H. Sørensen ◽  
D. Thornberg ◽  
K.F. Janning

In 1998, the capacity of the BIOSTYR® submerged biofilter at Nyborg WWTP was extended from 48,000 PE to 60,000 PE including advanced sensor based control, post-denitrification in BIOSTYR® and equalization of side flows. The existing configuration with 8 BIOSTYR® DN/N cells is based on pre-denitrification and an internal recirculation of 600–800%. The extended plant comprises 7 BIOSTYR® DN/N cells with 50–225% recirculation followed by 3 BIOSTYR DN cells for post-denitrification. The advanced control loops include blower control, control of the number of active cells (stand-by), automatic switch to high load configuration, control of the side flow equalization, control of the internal recirculation and control of the external carbon source dosing. In this paper, the achieved improvements are documented by comparing influent and effluent data, methanol and energy consumption from comparable periods before and after the extension. Although the nitrogen load to the plant was increased by 20% after the extension, the effluent quality has improved significantly with a reduction of Total-N from 7–8 mg/l to 3–4 mg/l. Simultaneously, the methanol consumption has been reduced by more than 50% per kg removed nitrogen. The energy consumption remained constant although the nitrogen load was increased by 20% and the inflow by 80%.


Sign in / Sign up

Export Citation Format

Share Document