scholarly journals Secreted cystatins decrease proliferation and enhance apoptosis of human leukemic cells

FEBS Open Bio ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2166-2181
Author(s):  
Samar Hunaiti ◽  
Hanna Wallin ◽  
Mia Eriksson ◽  
Marcus Järås ◽  
Magnus Abrahamson
Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2299-2307 ◽  
Author(s):  
Masayuki Okada ◽  
Souichi Adachi ◽  
Tsuyoshi Imai ◽  
Ken-ichiro Watanabe ◽  
Shin-ya Toyokuni ◽  
...  

Abstract Caspase-independent programmed cell death can exhibit either an apoptosis-like or a necrosis-like morphology. The ABL kinase inhibitor, imatinib mesylate, has been reported to induce apoptosis of BCR-ABL–positive cells in a caspase-dependent fashion. We investigated whether caspases alone were the mediators of imatinib mesylate–induced cell death. In contrast to previous reports, we found that a broad caspase inhibitor, zVAD-fmk, failed to prevent the death of imatinib mesylate–treated BCR-ABL–positive human leukemic cells. Moreover, zVAD-fmk–preincubated, imatinib mesylate–treated cells exhibited a necrosis-like morphology characterized by cellular pyknosis, cytoplasmic vacuolization, and the absence of nuclear signs of apoptosis. These cells manifested a loss of the mitochondrial transmembrane potential, indicating the mitochondrial involvement in this caspase-independent necrosis. We excluded the participation of several mitochondrial factors possibly involved in caspase-independent cell death such as apoptosis-inducing factor, endonuclease G, and reactive oxygen species. However, we observed the mitochondrial release of the serine protease Omi/HtrA2 into the cytosol of the cells treated with imatinib mesylate or zVAD-fmk plus imatinib mesylate. Furthermore, serine protease inhibitors prevented the caspase-independent necrosis. Taken together, our results suggest that imatinib mesylate induces a caspase-independent, necrosis-like programmed cell death mediated by the serine protease activity of Omi/HtrA2.


1991 ◽  
Vol 15 (8) ◽  
pp. 766 ◽  
Author(s):  
Ronald D. Barr ◽  
Delsworth Harnish

Biochemistry ◽  
1988 ◽  
Vol 27 (24) ◽  
pp. 8861-8869 ◽  
Author(s):  
Mary K. Danks ◽  
Carla A. Schmidt ◽  
Margaret C. Cirtain ◽  
D. Parker Suttle ◽  
William T. Beck

Author(s):  
M. Seligmann ◽  
L. B. Vogler ◽  
P. Guglielmi ◽  
J. C. Brouet ◽  
J. L. Preud’homme

1991 ◽  
Vol 27 ◽  
pp. S65 ◽  
Author(s):  
G. Barrera ◽  
R. Muraca ◽  
C. Di Mauro ◽  
V.M. Fazio ◽  
M.U. Dianzani

Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 805-813 ◽  
Author(s):  
Jianchang Yang ◽  
Li Chai ◽  
Chong Gao ◽  
Taylor C. Fowles ◽  
Zaida Alipio ◽  
...  

Abstract Increasing studies suggest that SALL4 may play vital roles in leukemogenesis and stem cell phenotypes. We have mapped the global gene targets of SALL4 using chromatin immunoprecipitation followed by microarray hybridization and identified more than 2000 high-confidence, SALL4-binding genes in the human acute promyelocytic leukemic cell line, NB4. Analysis of SALL4-binding sites reveals that genes involved in cell death, cancer, DNA replication/repair, and cell cycle were highly enriched (P < .05). These genes include 38 important apoptosis-inducing genes (TNF, TP53, PTEN, CARD9, CARD11, CYCS, LTA) and apoptosis-inhibiting genes (Bmi-1, BCL2, XIAP, DAD1, TEGT). Real-time polymerase chain reaction has shown that expression levels of these genes changed significantly after SALL4 knockdown, which ubiquitously led to cell apoptosis. Flow cytometry revealed that reduction of SALL4 expression in NB4 and other leukemia cell lines dramatically increased caspase-3, annexin V, and DNA fragmentation activity. Bromodeoxyuridine-incorporation assays showed decreased numbers of S-phase cells and increased numbers of G1- and G2-phase cells indicating reduced DNA synthesis, consistent with results from cell proliferation assays. In addition, NB4 cells that express low levels of SALL4 have significantly decreased tumorigenecity in immunodeficient mice. Our studies provide a foundation in the development of leukemia stem cell–specific therapy by targeting SALL4.


1967 ◽  
Vol 5 (3) ◽  
pp. 561
Author(s):  
R. A. Adams ◽  
S. Farber ◽  
G. E. Foley ◽  
G. Betty ◽  
H. Lazarus

Sign in / Sign up

Export Citation Format

Share Document