Immunological Markers of Human Leukemic Cells of the B Lineage

Author(s):  
M. Seligmann ◽  
L. B. Vogler ◽  
P. Guglielmi ◽  
J. C. Brouet ◽  
J. L. Preud’homme
Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 873-878 ◽  
Author(s):  
FM Uckun ◽  
H Sather ◽  
G Reaman ◽  
J Shuster ◽  
V Land ◽  
...  

Mice with severe combined immunodeficiency (SCID) provide a model system to examine the in vivo homing, engraftment, and growth patterns of normal and malignant human hematopoietic cells. The relation between leukemic cell growth in this model and the treatment outcome in patients from whom cells were derived has not been established. Leukemic cells from 42 children with newly diagnosed high-risk B- lineage acute lymphoblastic leukemia were inoculated intravenously into CB.17 SCID mice. Mice were killed at 12 weeks or when they became moribund as a result of disseminated leukemia. All mice were necropsied and subjected to a series of laboratory studies to assess their burden of human leukemic cells. Twenty-three patients whose leukemic cells caused histopathologically detectable leukemia in SCID mice had a significantly higher relapse rate than the 19 patients whose leukemic cells did not (estimated 5-year event-free survival: 29.5% v 94.7%; 95% confidence intervals, 11.2% to 50.7% v 68.1% to 99.2%; P < .0001 by log- rank test). The occurrence of overt leukemia in SCID mice was was a highly significant predictor of patient relapse. The estimated instantaneous risk of relapse for patients whose leukemic cells caused overt leukemia in SCID mice was 21.5-fold greater than that for the remaining patients. Thus, growth of human leukemic cells in SCID mice is a strong and independent predictor of relapse in patients with newly diagnosed high-risk B-lineage acute lymphoblastic leukemia.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1998-1998
Author(s):  
Rebecca J. Asch ◽  
Nisha Shah ◽  
Tucker W. LeBien

Abstract Three to five amino acid caspase inhibitors have been extensively used to identify the role of specific caspases in apoptotic pathways triggered by a wide range of cellular insults. Unexpectedly, we have recently demonstrated that the irreversible caspase-9 inhibitor (C9i) Z-LEHD-FMK can promote apoptosis in selected stressed and non-stressed human leukemic cells, and that inhibition of caspase-9 protein expression does not render cells more resistant to stress-induced apoptosis (Shah et al., Blood, in press 11/15/04). The goal of the current study was to analyze the role of caspase-9 in C9i-induced apoptosis, and the role of specific amino acids in the proapoptotic activity of C9i. We first determined whether cells made deficient in caspase-9 were still sensitive to the proapoptotic activity of C9i. Electroporation of the BLIN-4L stromal cell-dependent B-lineage ALL cell line and the RAMOS Burkitt lymphoma cell line with siRNA specific for caspase-9 led to >95% reduction of caspase-9 protein. Yet, both cells still exhibited a dose-dependent apoptotic response to C9i indistinguishable from cells electroporated with control siRNA. Since proapoptotic activity was not a property of inhibitors of caspases-2, 3, 6 and 8 (Shah et al.), we further examined the minimal structural requirements for the proapoptotic activity of C9i. The P1 aspartic acid and P3 glutamic acid are highly conserved in other caspase inhibitors that do not exhibit proapoptotic activity, so we initially focused on the P2 and P4 positions. The parent compound Z-LEHD-FMK was modified to yield Z-LEAD-FMK and Z-AEHD-FMK (synthesized by MP Biomedicals, Livermore, CA). Z-WEHD-FMK (commercially available as caspase-1 inhibitor) and Z-LEED-FMK (commercially available as caspase-13 inhibitor) were also studied. We tested several cell lines previously shown to be sensitive to C9i. As expected (Shah et al.), the BLIN-2, BLIN-3 and BLIN-4L adherent cell-dependent B-lineage ALL, the BLIN-1 pre-B ALL and the RAMOS Burkitt B cell lymphoma were sensitive to C9i as measured by TMRE and Annexin V staining. Strikingly, Z-LEAD-FMK and Z-LEED-FMK induced no apoptosis in the C9i sensitive targets. In contrast, Z-AEHD-FMK was weakly proapoptotic (at the maximum concentration of 100 μM) whereas Z-WEHD-FMK exhibited slightly greater proapoptotic activity than the parent compound Z-LEHD-FMK. Furthermore, Z-WEHD-FMK exhibited an overall pattern of proapoptotic activity against multiple sensitive and insensitive leukemic cell targets that was indistinguishable from Z-LEHD-FMK. Thus, the leucine at position P4 is expendable whereas the histidine at P2 is essential for proapoptotic activity of Z-LEHD-FMK. This pattern of apoptotic sensitivity to Z-LEHD-FMK and Z-WEHD-FMK extended to CD19+ B-lineage cells derived from cord blood HSC plated on the murine MS-5 stromal cell line. As a more stringent test of proapoptotic activity, the peptides were tested by limiting dilution analysis against RAMOS and K-562. Fifty μM Z-LEHD-FMK or 50 μM Z-WEHD-FMK exerted 2.5–3.0 log killing of RAMOS but had no effect on K-562. We conclude that selected peptides previously synthesized and widely used as caspase inhibitors harbor potent proapoptotic activity against human leukemic cells, which is unexpectedly distinct from their capacity to inhibit activated caspases.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 21-31 ◽  
Author(s):  
RC Stong ◽  
SJ Korsmeyer ◽  
JL Parkin ◽  
DC Arthur ◽  
JH Kersey

Abstract A cell line, designated RS4;11, was established from the bone marrow of a patient in relapse with an acute leukemia that was characterized by the t(4;11) chromosomal abnormality. The cell line and the patient's fresh leukemic cells both had the t(4;11)(q21;q23) and an isochromosome for the long arm of No. 7. Morphologically, all cells were lymphoid in appearance. Ultrastructurally and cytochemically, approximately 30% of the cells possessed myeloid features. The cells were strongly positive for terminal deoxynucleotidyl transferase. They were HLA-DR positive and expressed surface antigens characteristic for B lineage cells, including those detected by anti-B4, BA-1, BA-2, and PI153/3. Immunoglobulin gene analysis revealed rearrangements of the heavy chain and kappa chain genes. The cells lacked the common acute lymphoblastic leukemia antigen and antigenic markers characteristic of T lineage cells. The cells reacted with the myeloid antibody 1G10 but not with other myeloid monoclonal antibodies. Treatment with 12-O-tetradecanoyl- phorbol-13-acetate induced a monocyte-like phenotype demonstrated by cytochemical, functional, immunologic, and electron microscopic studies. The expression of markers of both early lymphoid and early myeloid cells represents an unusual phenotype and suggests that RS4;11 represents a cell with dual lineage capabilities. To our knowledge, RS4;11 is the first cell line established from t(4;11)-associated acute leukemia.


Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2299-2307 ◽  
Author(s):  
Masayuki Okada ◽  
Souichi Adachi ◽  
Tsuyoshi Imai ◽  
Ken-ichiro Watanabe ◽  
Shin-ya Toyokuni ◽  
...  

Abstract Caspase-independent programmed cell death can exhibit either an apoptosis-like or a necrosis-like morphology. The ABL kinase inhibitor, imatinib mesylate, has been reported to induce apoptosis of BCR-ABL–positive cells in a caspase-dependent fashion. We investigated whether caspases alone were the mediators of imatinib mesylate–induced cell death. In contrast to previous reports, we found that a broad caspase inhibitor, zVAD-fmk, failed to prevent the death of imatinib mesylate–treated BCR-ABL–positive human leukemic cells. Moreover, zVAD-fmk–preincubated, imatinib mesylate–treated cells exhibited a necrosis-like morphology characterized by cellular pyknosis, cytoplasmic vacuolization, and the absence of nuclear signs of apoptosis. These cells manifested a loss of the mitochondrial transmembrane potential, indicating the mitochondrial involvement in this caspase-independent necrosis. We excluded the participation of several mitochondrial factors possibly involved in caspase-independent cell death such as apoptosis-inducing factor, endonuclease G, and reactive oxygen species. However, we observed the mitochondrial release of the serine protease Omi/HtrA2 into the cytosol of the cells treated with imatinib mesylate or zVAD-fmk plus imatinib mesylate. Furthermore, serine protease inhibitors prevented the caspase-independent necrosis. Taken together, our results suggest that imatinib mesylate induces a caspase-independent, necrosis-like programmed cell death mediated by the serine protease activity of Omi/HtrA2.


1991 ◽  
Vol 15 (8) ◽  
pp. 766 ◽  
Author(s):  
Ronald D. Barr ◽  
Delsworth Harnish

Biochemistry ◽  
1988 ◽  
Vol 27 (24) ◽  
pp. 8861-8869 ◽  
Author(s):  
Mary K. Danks ◽  
Carla A. Schmidt ◽  
Margaret C. Cirtain ◽  
D. Parker Suttle ◽  
William T. Beck

1991 ◽  
Vol 27 ◽  
pp. S65 ◽  
Author(s):  
G. Barrera ◽  
R. Muraca ◽  
C. Di Mauro ◽  
V.M. Fazio ◽  
M.U. Dianzani

Sign in / Sign up

Export Citation Format

Share Document