scholarly journals Environmental Barrier Coatings for Silicon-Based Ceramics

Author(s):  
K. N. Lee ◽  
D. S. Fox ◽  
R. C. Robinson ◽  
N. P. Bansal
Author(s):  
Yiguang Wang ◽  
Linan An

Silicon-based ceramics and composites are one of the most promising candidates for high temperature structural components in next generation gas turbines due to their excellent thermo-mechanical properties. However, these materials severely degraded when used in high temperature oxidizing environments, particularly, in the presence of corrosive species such as alkali elements or water vapor. Currently, the most promising approach with near-term benefits is to employ environmental barrier coatings (EBCs) that prevent direct contact between silicon-based materials and aggressive environments exist in turbine engines. Previous work on EBCs has primarily focused on using oxide coatings because oxides are in general more resistant to corrosive environments than Silicon-based ceramics. In this study, we propose to develop polymer-derived SiAlCN amorphous ceramics for EBC applications. Our research revealed that the oxidation rate of the SiAlCN ceramics is about 10 times lower than the lowest values observed on chemical vapor deposition (CVD) silicon carbide/nitride. Furthermore, the SiAlCN also exhibited good corrosion resistance to alkali salt at elevated temperatures.


2015 ◽  
Vol 11 (2) ◽  
pp. 238-272 ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
Ramin Yavari ◽  
S. Ramaswami ◽  
Rohan Galgalikar

Purpose – The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC) components used in gas-turbine engines are commonly protected with so-called environmental barrier coatings (EBCs). EBCs typically consist of three layers: a top thermal and mechanical protection coat; an intermediate layer which provides environmental protection; and a bond coat which assures good EBC/CMC adhesion. The materials used in different layers and their thicknesses are selected in such a way that the coating performance is optimized for the gas-turbine component in question. Design/methodology/approach – Gas-turbine engines, while in service, often tend to ingest various foreign objects of different sizes. Such objects, entrained within the gas flow, can be accelerated to velocities as high as 600 m/s and, on impact, cause substantial damage to the EBC and SiC/SiC CMC substrate, compromising the component integrity and service life. The problem of foreign object damage (FOD) is addressed in the present work computationally using a series of transient non-linear dynamics finite-element analyses. Before such analyses could be conducted, a major effort had to be invested toward developing, parameterizing and validating the constitutive models for all attendant materials. Findings – The computed FOD results are compared with their experimental counterparts in order to validate the numerical methodology employed. Originality/value – To the authors’ knowledge, the present work is the first reported study dealing with the computational analysis of the FOD sustained by CMCs protected with EBCs.


Rare Metals ◽  
2019 ◽  
Vol 39 (5) ◽  
pp. 498-512 ◽  
Author(s):  
Hong-Fei Chen ◽  
Chi Zhang ◽  
Yu-Chen Liu ◽  
Peng Song ◽  
Wen-Xian Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document