Chronic Lymphocytic Leukemia of B Cell and T Cell Phenotype (T Cell Prolymphocytic Leukemia)

Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 178-185
Author(s):  
JD Norton ◽  
J Pattinson ◽  
AV Hoffbrand ◽  
H Jani ◽  
JC Yaxley ◽  
...  

Fifty-nine patients with B cell chronic lymphocytic leukemia (B-CLL) were screened for clonal rearrangement of T cell receptor (TCR) beta and gamma chain genes. Four were found with rearranged TCR beta genes, but none had detectable rearrangement of TCR gamma genes. One typical patient with B-CLL had a TCR beta gene structure consistent with a variable-diversity-joining rearrangement into the C beta 2 gene on one allele. An apparently identical rearrangement pattern was seen in a second patient, which suggested that there may be a restriction on the repertoire of possible TCR beta gene recombinations in mature B cells. Two further patients had a simple deletion of sequences, consistent with a diversity-joining rearrangement into C beta 2 on one allele. All four patients had rearrangements of immunoglobulin heavy- and light- chain genes typical of mature B cell malignancies. However, on review of clinical, morphological, and immunophenotype data, two had features consistent with B cell prolymphocytic leukemia or B lymphoma, and a third had progressed to a prolymphocytic transformation. Low-level expression of a predominantly 1.0- to 1.2-kilobase germ line TCR beta gene transcript was detected in several B-CLLs and at a comparable level in the four with rearranged TCR beta genes. This, together with the low frequency of TCR gene rearrangement, suggests that most B-CLL cases arise at a developmental stage when factors required for TCR gene activity are not operative.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 178-185 ◽  
Author(s):  
JD Norton ◽  
J Pattinson ◽  
AV Hoffbrand ◽  
H Jani ◽  
JC Yaxley ◽  
...  

Abstract Fifty-nine patients with B cell chronic lymphocytic leukemia (B-CLL) were screened for clonal rearrangement of T cell receptor (TCR) beta and gamma chain genes. Four were found with rearranged TCR beta genes, but none had detectable rearrangement of TCR gamma genes. One typical patient with B-CLL had a TCR beta gene structure consistent with a variable-diversity-joining rearrangement into the C beta 2 gene on one allele. An apparently identical rearrangement pattern was seen in a second patient, which suggested that there may be a restriction on the repertoire of possible TCR beta gene recombinations in mature B cells. Two further patients had a simple deletion of sequences, consistent with a diversity-joining rearrangement into C beta 2 on one allele. All four patients had rearrangements of immunoglobulin heavy- and light- chain genes typical of mature B cell malignancies. However, on review of clinical, morphological, and immunophenotype data, two had features consistent with B cell prolymphocytic leukemia or B lymphoma, and a third had progressed to a prolymphocytic transformation. Low-level expression of a predominantly 1.0- to 1.2-kilobase germ line TCR beta gene transcript was detected in several B-CLLs and at a comparable level in the four with rearranged TCR beta genes. This, together with the low frequency of TCR gene rearrangement, suggests that most B-CLL cases arise at a developmental stage when factors required for TCR gene activity are not operative.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2347-2347
Author(s):  
Mariela Sivina ◽  
Elena Hartmann ◽  
Michael Keating ◽  
William G Wierda ◽  
Andreas Rosenwald ◽  
...  

Abstract Abstract 2347 Poster Board II-324 The human T cell leukemia/lymphoma 1 (TCL1) oncogene was initially identified as a target of chromosomal translocations and inversions at the 14q32.1 chromosome breakpoint region in T-cell prolymphocytic leukemia (T-PLL). Increased TCL1 expression is seen in follicular lymphoma, Burkitt lymphoma, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia (CLL). Transgenic mice over-expressing TCL1 under control of the mu immunoglobulin gene enhancer develop a CD5+ B cell lymphoproliferative disorder that mimics human CLL, indicating that TCL1 plays a central and/or causal role in the pathogenesis of CLL. However, chromosome aberrations that constitutively activate TCL1 have not (yet) been identified in the vast majority of CLL patients, and therefore the oncogenic mechanism(s) of TCL1 activation in CLL remain unclear. There is growing evidence that external signals from the microenvironment control and regulate the survival and proliferation of CLL cells. Marrow stromal cells (MSC) are highly effective in protecting CLL cells from spontaneous and drug-induced apoptosis, and are used as a model system to study the marrow microenvironment. In order to explore the molecular cross talk between CLL cells and MSC, we co-cultured CLL cells with different MSC and analyzed gene expression changes induced by co-cultures with MSC, an approach similar to our recent study with nurselike cells (Blood 113:3050-8, 2009). For this, RNA was extracted from 19-purified CLL cells from 10 different patients (baseline expression, day 0). Also, the same patients' samples were co-cultured on stroma cells (KUSA-H1, NK-Tert) for 2 and 7 days. At these time points, RNA again was isolated after CD19-purification. Then, gene expression was determined using HG U133 plus 2.0 oligonucleotide arrays from Affymetrix. Gene expression changes were analyzed in individual patients' samples, comparing baseline samples' gene expression to samples after 2 and 7 of co-culture on MSC. We observed relatively homogeneous gene expression changes in CLL cells after co-culture with MSC. We found that TCL1 was among the top 5 genes that were most highly up-regulated by MSC, based on at least 3-fold up-regulation in at least 6 of the paired samples. We also found an up-regulation of TCL1 at the protein level when assessed by immunoblotting and flow cytometry in CLL samples after co-culture with MSC. These findings indicate that MSC can induce and regulate TCL1 expression in CLL, suggesting that the microenvironment plays an even greater role in the pathogenesis of this disease than previously recognized. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 121 (2) ◽  
pp. 351-359 ◽  
Author(s):  
Eugenio Gaudio ◽  
Francesco Paduano ◽  
Apollinaire Ngankeu ◽  
Francesca Lovat ◽  
Muller Fabbri ◽  
...  

Abstract T-cell leukemia/lymphoma 1 (TCL1) is an oncogene overexpressed in T-cell prolymphocytic leukemia and in B-cell malignancies including B-cell chronic lymphocytic leukemia and lymphomas. To date, only a limited number of Tcl1-interacting proteins that regulate its oncogenic function have been identified. Prior studies used a proteomic approach to identify a novel interaction between Tcl1 with Ataxia Telangiectasia Mutated. The association of Tcl1 and Ataxia Telangiectasia Mutated leads to activation of the NF-κB pathway. Here, we demonstrate that Tcl1 also interacts with heat shock protein (Hsp) 70. The Tcl1-Hsp70 complex was validated by coimmunoprecipitation experiments. In addition, we report that Hsp70, a protein that plays a critical role in the folding and maturation of several oncogenic proteins, associates with Tcl1 protein and stabilizes its expression. The inhibition of the ATPase activity of Hsp70 results in ubiquitination and proteasome-dependent degradation of Tcl1. The inhibition of Hsp70 significantly reduced the growth of lymphoma xenografts in vivo and down-regulated the expression of Tcl1 protein. Our findings reveal a functional interaction between Tcl1 and Hsp70 and identify Tcl1 as a novel Hsp70 client protein. These findings suggest that inhibition of Hsp70 may represent an alternative effective therapy for chronic lymphocytic leukemia and lymphomas via its ability to inhibit the oncogenic functions of Tcl1.


1984 ◽  
Vol 16 (1) ◽  
pp. 67-73 ◽  
Author(s):  
A. Mittelman ◽  
T. Denny ◽  
D. Gebhard ◽  
C. Cirrincione ◽  
E. Kurland ◽  
...  

Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
JS Moore ◽  
MB Prystowsky ◽  
RG Hoover ◽  
EC Besa ◽  
PC Nowell

The consistent occurrence of T cell abnormalities in patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that the non- neoplastic host T cells may be involved in the pathogenesis of this B cell neoplasm. Because potential defects of immunoglobulin regulation are evident in B-CLL patients, we investigated one aspect of this by studying the T cell-mediated immunoglobulin isotype-specific immunoregulatory circuit in B-CLL. The existence of class-specific immunoglobulin regulatory mechanisms mediated by Fc receptor-bearing T cells (FcR + T) through soluble immunoglobulin binding factors (IgBFs) has been well established in many experimental systems. IgBFs can both suppress and enhance B cell activity in an isotype-specific manner. We investigated the apparently abnormal IgA regulation in a B-CLL patient (CLL249) whose B cells secrete primarily IgA in vitro. Enumeration of FcR + T cells showed a disproportionate increase in IgA FcR + T cells in the peripheral blood of this patient. Our studies showed that the neoplastic B cells were not intrinsically unresponsive to the suppressing component of IgABF produced from normal T cells, but rather the IgABF produced by the CLL249 host T cells was defective. CLL249 IgABF was unable to suppress IgA secretion by host or normal B cells and enhanced the in vitro proliferation of the host B cells. Size fractionation of both normal and CLL249 IgABF by gel-filtration high- performance liquid chromatography (HPLC) demonstrated differences in the ultraviolet-absorbing components of IgABF obtained from normal T cells v that from our patient with defective IgA regulation. Such T cell dysfunction may not be restricted to IgA regulation, since we have found similar expansion of isotype-specific FcR + T cells associated with expansion of the corresponding B cell clone in other patients with B-CLL. These data suggest that this T cell-mediated regulatory circuit could be significantly involved in the pathogenesis of B-CLL.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 279-284 ◽  
Author(s):  
O Ayanlar-Batuman ◽  
E Ebert ◽  
SP Hauptman

Abstract The present studies were designed to investigate the mechanism(s) of the defective T cell proliferative response to various stimuli in patients with B cell chronic lymphocytic leukemia B-CLL. In 14 patients with advanced B-CLL (stage III or IV) we found the T cell response in the autologous (auto) and allogeneic (allo) mixed lymphocyte reaction (MLR) to be 35.7% and 30% of the controls, respectively. Proliferation in the MLR depends upon the production of and response to interleukin 2 (IL 2), a T cell growth factor. IL 2 production in eight B-CLL patients was 22% of the control. The response to IL 2 was measured by the increase in the T cell proliferation in the MLR with the addition of IL 2. T cell proliferation in both the auto and allo MLR of CLL patients was significantly lower than in the controls after the addition of IL 2. The proliferative response of normal T cells to stimulation by CLL B cells was 50% of the control. This latter response was increased to control levels when cultures were supplemented with exogenous IL 2, suggesting that CLL B cells could stimulate IL 2 receptor generation in normal T cells in an allo MLR, but not IL 2 production. The presence of IL 2 receptors on activated T cells was directly determined using anti- Tac, a monoclonal antibody with specificity for the IL 2 receptor. Of the mitogen- or MLR-activated T cells in CLL patients, 6% and 10%, respectively, expressed Tac antigen, whereas identically stimulated control T cells were 60% and 47% Tac+, respectively. Our findings suggest that T cells in B-CLL are defective in their recognition of self or foreign major histocompatibility antigens as demonstrated by their impaired responsiveness in the MLR. Thus, these cells are unable to produce IL 2 or generate IL 2 receptors.


Sign in / Sign up

Export Citation Format

Share Document