Time-Dependent Crack Growth in Ceramic Composites: From Single Fibers to Bridged Cracks

Author(s):  
C. A. Lewinsohn ◽  
C. H. Henager ◽  
R. H. Jones
2002 ◽  
Vol 75 (4) ◽  
pp. 643-656 ◽  
Author(s):  
J. J. C. Busfield ◽  
K. Tsunoda ◽  
C. K. L. Davies ◽  
A. G. Thomas

Abstract Engineering components are observed to fail more rapidly under cyclic loading than under static loading. This reflects features of the underlying crack growth behavior. This behavior is characterized by the relation between the tearing energy, T, and the crack growth per cycle, dc/dn. The increment of crack growth during each cycle is shown here to result from the sum of time dependent and cyclic crack growth components. The time dependent component represents the crack growth behavior that would be present in a conventional constant T crack growth test. Under repeated stressing additional crack growth, termed the cyclic crack growth component, occurs. For a non-crystallizing elastomer, significant effects of frequency have been found on the cyclic crack growth behavior, reflecting the presence of this cyclic element of crack growth. The cyclic crack growth behavior over a wide range of frequencies was investigated for unfilled and swollen SBR materials. The time dependent crack growth component was calculated from constant T crack growth tests and the cyclic contribution derived from comparison with the observed cyclic growth. It is shown that decreasing the frequency or increasing the maximum tearing energy during a cycle results in the cyclic crack growth behavior being dominated by time dependent crack growth. Conversely at high frequency and at low tearing energy, cyclic crack growth is dominated by the cyclic crack growth component. A large effect of frequency on cyclic crack growth behavior was observed for highly swollen SBR. The cyclic crack growth behavior was dominated by the time dependent crack growth component over the entire range of tearing energy and/or crack growth rate. The origin of the cyclic component may be the formation/melting of quasi crystals at the crack tip, which is absent at fast crack growth rates in the unswollen SBR and is absent at all rates in the swollen SBR.


Author(s):  
Fashang Ma

High temperature fatigue crack growth is a combination of fatigue, creep and environmental attack, which greatly enhance fatigue crack growth. In order to understand the damage mechanisms and develop a physically based crack growth model, systematic experimental research has been conducted under various loading conditions for different specimen geometries made from a high strength nickel alloy. Test results from this work showed that time-dependent fatigue crack growth rates differ significantly from those observed in conventional fatigue crack growth tests. Crack geometry and loading history significantly affect fatigue crack growth rate. These results suggest the need for a change in the K based superposition approach for time-dependent crack growth modeling. A phenomenological model has been developed to predict time-dependent crack growth under various loading histories and crack geometries. In this model an effective stress intensity factor is defined to account for the effects of constraint loss of fracture mechanics due to crack-tip plasticity, and the creep stress relaxation on stress intensity factor. It is found the model can accurately predict the dwell crack growth rates for different crack geometries under various loading conditions.


Sign in / Sign up

Export Citation Format

Share Document