2005 ◽  
Vol 9 (2) ◽  
pp. 189-205
Author(s):  
A. Kerneis ◽  
A. Déguin ◽  
M. Feinberg

The purpose of this study is to select a process control parameter for monitoring microbial regrowth in a network and to develop a more accurate and relevant quality control of supply water. Two parameters were examined as potential process control parameters: the water residence time in the network and the concentration of biodegradable organic matter. Residence time calculations were carried out and validated by tracer studies in a branched network and then in a simply looped network. The measurement of the natural dissolved organic carbon (DOC) consumption in the network was preferred to the determination of any in vitro biodegradation. The measurement of consumption requires the determination of DOC in treated water and in supply water. It is simpler and less expensive than other biodegradable organic matter determinations. A model for colony counts as a function of the residence time was developed in order to demonstrate that this parameter can be used for process controlling. This model was very well adjusted to data collected in a network in winter, spring and summer. This process control parameter was then used in order to locate and estimate the quantity of water whose colony counts exceed the European directive guide level. Accurate correlation measurements between colony counts and DOC consumed in the network were carried out in three distinct systems. No significant correlations were measured. For these three networks, biodegradable organic matter measurements based on DOC determinations were demonstrated to be unreliable process control parameters for monitoring bacterial regrowth.


2015 ◽  
Vol 813-814 ◽  
pp. 293-298 ◽  
Author(s):  
K. Venkatesh ◽  
T. Senthilvelan

Hard turning is recent upcoming technology through which surface quality of machined components can be enhanced while comparing with the traditional grinding method. Since the absence of metal cutting fluids during this process, numerous harmful effects on shop floor operators and possible negative impacts on environment can be eliminated. Normally some of the vital machinability aspects such as surface integrity of machined parts has been influenced by magnitude of cutting temperature which evolved in metal cutting interface. Therefore in this experimental investigation, the influence of various process control parameters on tool-chip interface temperature was evaluated during hard turning of AISI D3 tool steel in dry condition. The machining trials were conducted as per the L9 Taguchi DOE approach and subsequent experimental data were analysed with the use of Design-Expert® V7 statistical software. This experiment results revealed that feed rate is having predominant influence in determining the magnitude of cutting temperature followed by depth of cut and cutting speed whereas the influence of cutting tool nose radius is insignificant.


2021 ◽  
Vol 306 (12) ◽  
pp. 2170049
Author(s):  
Fawzan S. Alfares ◽  
Ece Guler ◽  
Hussain Alenezi ◽  
Muhammet Emin Cam ◽  
Mohan Edirisinghe

2005 ◽  
Vol 128 (1) ◽  
pp. 307-314 ◽  
Author(s):  
Tadej Kokalj ◽  
Jure Klemenčič ◽  
Peter Mužič ◽  
Igor Grabec ◽  
Edvard Govekar

In this paper, a novel laser droplet formation process (LDFP) from a metal wire is investigated. The process consists of the formation of a molten pendant droplet and its detachment, which are both unstable and influenced by numerous process parameters. The goal of the investigation is to specify the main process parameters and the values that provide for stable and repeatable process. Based on theoretical and experimental consideration of LDFP, a methodology for estimation of process control parameters is proposed. Estimation of the parameters is demonstrated on examples of deposited droplets of nickel and tin-alloy wires. Experimental results on tin-alloy wire indicate that the problem of splashes on the substrate is still present, while those on nickel reveal an acceptable formation of droplets.


Sign in / Sign up

Export Citation Format

Share Document