Nonlinear Response of Multiple-Degree-Of-Freedom Systems

2012 ◽  
pp. 183-200
Author(s):  
A. H. Nayfeh ◽  
C. Chin ◽  
D. T. Mook

Abstract The method of normal forms is used to study the nonlinear response of two-degree-of-freedom systems with repeated natural frequencies and cubic nonlinearity to a principal parametric excitation. The linear part of the system has a nonsemisimple one-to-one resonance. The character of the stability and various types of bifurcation are analyzed. The results are applied to the flutter of a simply-supported panel in a supersonic airstream.


1995 ◽  
Vol 2 (1) ◽  
pp. 43-57 ◽  
Author(s):  
A. H. Nayfeh ◽  
C. Chin ◽  
D. T. Mook

The method of normal forms is used to study the nonlinear response of two-degree-of-freedom systems with repeated natural frequencies and cubic nonlinearity to a principal parametric excitation. The linear part of the system has a nonsemisimple one-to-one resonance. The character of the stability and various types of bifurcation including the formation of a homoclinic orbit are analyzed. The results are applied to the flutter of a simply supported panel in a supersonic airstream.


1997 ◽  
Vol 2 (2) ◽  
pp. 186-191 ◽  
Author(s):  
William P. Dunlap ◽  
Leann Myers

Author(s):  
Nguyen Cao Thang ◽  
Luu Xuan Hung

The paper presents a performance analysis of global-local mean square error criterion of stochastic linearization for some nonlinear oscillators. This criterion of stochastic linearization for nonlinear oscillators bases on dual conception to the local mean square error criterion (LOMSEC). The algorithm is generally built to multi degree of freedom (MDOF) nonlinear oscillators. Then, the performance analysis is carried out for two applications which comprise a rolling ship oscillation and two degree of freedom one. The improvement on accuracy of the proposed criterion has been shown in comparison with the conventional Gaussian equivalent linearization (GEL).


Sign in / Sign up

Export Citation Format

Share Document