Determination of the Thermal Boundary Conditions during Aluminum DC Casting from Experimental Data Using Inverse Modeling

2013 ◽  
pp. 665-671
Author(s):  
Ivo J. Opstelten ◽  
Jan M. Rabenberg
1983 ◽  
Vol 4 ◽  
pp. 260-265 ◽  
Author(s):  
D. S. Sodhi ◽  
F. D. Haynes ◽  
K. Kato ◽  
K. Hirayama

Experiments were performed to determine the forces required to buckle a floating ice sheet pushing against structures of different widths. The characteristic length of each ice sheet was determined to enable a comparison to be made between the theoretical and experimental results.Most of the experimental data points are within the range of the theoretical values of normalized buckling loads for frictionless and hinged boundary conditions, which represent the extreme situations for ice-structure contact. Thus, the agreement between the theoretical and experimental buckling loads is considered to be good. Photographs of the buckled ice sheets show a resemblance to the theoretical mode of buckling.


1983 ◽  
Vol 4 ◽  
pp. 260-265 ◽  
Author(s):  
D. S. Sodhi ◽  
F. D. Haynes ◽  
K. Kato ◽  
K. Hirayama

Experiments were performed to determine the forces required to buckle a floating ice sheet pushing against structures of different widths. The characteristic length of each ice sheet was determined to enable a comparison to be made between the theoretical and experimental results. Most of the experimental data points are within the range of the theoretical values of normalized buckling loads for frictionless and hinged boundary conditions, which represent the extreme situations for ice-structure contact. Thus, the agreement between the theoretical and experimental buckling loads is considered to be good. Photographs of the buckled ice sheets show a resemblance to the theoretical mode of buckling.


1996 ◽  
Vol 118 (3) ◽  
pp. 555-563 ◽  
Author(s):  
D. Vijayaraghavan

In this paper, an efficient and accurate numerical procedure to determine the thermo-hydrodynamic performance of cavitating bearings is described. This procedure is based on the earlier development of Elrod for lubricating films, in which the properties across the film thickness are determined at Lobatto points and their distributions are expressed by collocated polynomials. The cavitated regions and their boundaries are rigorously treated. Thermal boundary conditions at the surfaces, including heat dissipation through the metal to the ambient, are incorporated. Numerical examples are presented comparing the predictions using this procedure with earlier theoretical predictions and experimental data. With a few points across the film thickness and across the journal and the bearing in the radial direction, the temperature profile is very well predicted.


2012 ◽  
Vol 57 (1) ◽  
pp. 385-393 ◽  
Author(s):  
M. Rywotycki ◽  
K. Miłkowska-Piszczek ◽  
L. Trębacz

Identification of the Boundary Conditions in the Continuous Casting of SteelThe results of investigations relating the determination of thermal boundary conditions for continuous casting of steel were presented in the paper. The slab of dimensions 1100 mm x 220 mm was analyzed. In numerical calculations two models were compared. The first was the simple one and it used average heat transfer coefficient in both cooling zones. The second one used complex models in primary and secondary cooling zones. The presented models were verified on basing on an industrial data base. The problem was solved by the finite element method and the commercial numerical packet ProCAST.


Author(s):  
Vincenzo Fico ◽  
Michael J. Pekris ◽  
Christopher J. Barnes ◽  
Rakesh Kumar Jha ◽  
David Gillespie

Aero-engine gas turbine performance and efficiency can be improved through the application of compliant shaft seal types to certain sealing locations within the secondary air system. Leaf seals offer better performance than traditional labyrinth seals, giving lower leakage flows at design duties. However, for aeroengine applications, seal designs must be able to cope with relatively large off-design seal closures and closure uncertainties. The two-way coupling between temperatures of seal components and seal closures, through the frictional heat generated at the leaf-rotor interface when in contact, represents an important challenge for leaf seal analysis and design. This coupling can lead to leaf wear and loss, rotor overheating, and possibly to unstable sealing system behaviour (thermal runaway). In this paper we use CFD, FE thermal analysis, and experimental data to characterise the thermal behaviour of leaf seals. This sets the basis for a study of the coupled thermo-mechanical behaviour. CFD is used to understand the fluid-mechanics of a leaf pack. The leaf seal tested at the Oxford Osney Laboratory is used for the study. Simulations for four seal axial Reynolds number are conducted; for each value of the Reynolds number, leaf tip-rotor contact and clearance are considered. Distribution of mass flow within the leaf pack, distribution of heat transfer coefficient at the leaf surface, and swirl velocity pick-up across the pack predicted using CFD are discussed. The experimental data obtained from the Oxford rig is used to develop a set of thermal boundary conditions for the leaf pack. An FE thermal model of the rig is devised, informed by the aforementioned CFD study. Four experiments are simulated; thermal boundary conditions are calibrated to match predicted metal temperatures to those measured on the rig. A sensitivity analysis of the rotor temperature predictions to the heat transfer assumptions is carried out. The calibrated set of thermal boundary conditions is shown to accurately predict the measured rotor temperatures.


Sign in / Sign up

Export Citation Format

Share Document