Applying Super-Resolution Imaging Techniques to Problems in Single-Molecule SERS

Author(s):  
Eric J. Titus ◽  
Katherine A. Willets
Author(s):  
Matthieu Lagardère ◽  
Ingrid Chamma ◽  
Emmanuel Bouilhol ◽  
Macha Nikolski ◽  
Olivier Thoumine

AbstractFluorescence live-cell and super-resolution microscopy methods have considerably advanced our understanding of the dynamics and mesoscale organization of macro-molecular complexes that drive cellular functions. However, different imaging techniques can provide quite disparate information about protein motion and organization, owing to their respective experimental ranges and limitations. To address these limitations, we present here a unified computer program that allows one to model and predict membrane protein dynamics at the ensemble and single molecule level, so as to reconcile imaging paradigms and quantitatively characterize protein behavior in complex cellular environments. FluoSim is an interactive real-time simulator of protein dynamics for live-cell imaging methods including SPT, FRAP, PAF, and FCS, and super-resolution imaging techniques such as PALM, dSTORM, and uPAINT. The software, thoroughly validated against experimental data on the canonical neurexin-neuroligin adhesion complex, integrates diffusion coefficients, binding rates, and fluorophore photo-physics to calculate in real time the distribution of thousands of independent molecules in 2D cellular geometries, providing simulated data of protein dynamics and localization directly comparable to actual experiments.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthieu Lagardère ◽  
Ingrid Chamma ◽  
Emmanuel Bouilhol ◽  
Macha Nikolski ◽  
Olivier Thoumine

AbstractFluorescence live-cell and super-resolution microscopy methods have considerably advanced our understanding of the dynamics and mesoscale organization of macro-molecular complexes that drive cellular functions. However, different imaging techniques can provide quite disparate information about protein motion and organization, owing to their respective experimental ranges and limitations. To address these issues, we present here a robust computer program, called FluoSim, which is an interactive simulator of membrane protein dynamics for live-cell imaging methods including SPT, FRAP, PAF, and FCS, and super-resolution imaging techniques such as PALM, dSTORM, and uPAINT. FluoSim integrates diffusion coefficients, binding rates, and fluorophore photo-physics to calculate in real time the localization and intensity of thousands of independent molecules in 2D cellular geometries, providing simulated data directly comparable to actual experiments. FluoSim was thoroughly validated against experimental data obtained on the canonical neurexin-neuroligin adhesion complex at cell–cell contacts. This unified software allows one to model and predict membrane protein dynamics and localization at the ensemble and single molecule level, so as to reconcile imaging paradigms and quantitatively characterize protein behavior in complex cellular environments.


2020 ◽  
Author(s):  
Benedict Diederich ◽  
Øystein Helle ◽  
Patrick Then ◽  
Pablo Carravilla ◽  
Kay Oliver Schink ◽  
...  

AbstractSuper-resolution microscopy allows for stunning images with a resolution well beyond the optical diffraction limit, but the imaging techniques are demanding in terms of instrumentation and software. Using scientific-grade cameras, solid-state lasers and top-shelf microscopy objective lenses drives the price and complexity of the system, limiting its use to well-funded institutions. However, by harnessing recent developments in CMOS image sensor technology and low-cost illumination strategies, super-resolution microscopy can be made available to the mass-markets for a fraction of the price. Here, we present a 3D printed, self-contained super-resolution microscope with a price tag below 1000 $ including the objective and a cellphone. The system relies on a cellphone to both acquire and process images as well as control the hardware, and a photonic-chip enabled illumination. The system exhibits 100nm optical resolution using single-molecule localization microscopy and can provide live super-resolution imaging using light intensity fluctuation methods. Furthermore, due to its compactness, we demonstrate its potential use inside bench-top incubators and high biological safety level environments imaging SARS-CoV-2 viroids. By the development of low-cost instrumentation and by sharing the designs and manuals, the stage for democratizing super-resolution imaging is set.


2020 ◽  
Vol 21 (3) ◽  
pp. 744 ◽  
Author(s):  
Hannes Gonschior ◽  
Volker Haucke ◽  
Martin Lehmann

The tight junction (TJ) and the adherens junction (AJ) bridge the paracellular cleft of epithelial and endothelial cells. In addition to their role as protective barriers against bacteria and their toxins they maintain ion homeostasis, cell polarity, and mechano-sensing. Their functional loss leads to pathological changes such as tissue inflammation, ion imbalance, and cancer. To better understand the consequences of such malfunctions, the junctional nanoarchitecture is of great importance since it remains so far largely unresolved, mainly because of major difficulties in dynamically imaging these structures at sufficient resolution and with molecular precision. The rapid development of super-resolution imaging techniques ranging from structured illumination microscopy (SIM), stimulated emission depletion (STED) microscopy, and single molecule localization microscopy (SMLM) has now enabled molecular imaging of biological specimens from cells to tissues with nanometer resolution. Here we summarize these techniques and their application to the dissection of the nanoscale molecular architecture of TJs and AJs. We propose that super-resolution imaging together with advances in genome engineering and functional analyses approaches will create a leap in our understanding of the composition, assembly, and function of TJs and AJs at the nanoscale and, thereby, enable a mechanistic understanding of their dysfunction in disease.


2017 ◽  
Author(s):  
Yoshiyuki Arai ◽  
Hiroki Takauchi ◽  
Yuhei Ogami ◽  
Satsuki Fujiwara ◽  
Masahiro Nakano ◽  
...  

AbstractSuper-resolution imaging techniques based on single molecule localization microscopy (SMLM) broke the diffraction limit of optical microscopy in living samples with the aid of photoswitchable fluorescent probes and intricate microscopy systems. Here, we developed a fluorescent protein, SPOON, which can be switched-off by excitation light illumination and switched-on by thermally-induced dehydration resulting in an apparent spontaneous blinking behavior. This unique property of SPOON provides a simple SMLM-based super-resolution imaging platform which requires only a single 488 nm laser.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2847-2859
Author(s):  
Soojung Kim ◽  
Hyerin Song ◽  
Heesang Ahn ◽  
Seung Won Jun ◽  
Seungchul Kim ◽  
...  

AbstractAnalysing dynamics of a single biomolecule using high-resolution imaging techniques has been had significant attentions to understand complex biological system. Among the many approaches, vertical nanopillar arrays in contact with the inside of cells have been reported as a one of useful imaging applications since an observation volume can be confined down to few-tens nanometre theoretically. However, the nanopillars experimentally are not able to obtain super-resolution imaging because their evanescent waves generate a high optical loss and a low signal-to-noise ratio. Also, conventional nanopillars have a limitation to yield 3D information because they do not concern field localization in z-axis. Here, we developed novel hybrid nanopillar arrays (HNPs) that consist of SiO2 nanopillars terminated with gold nanodisks, allowing extreme light localization. The electromagnetic field profiles of HNPs are obtained through simulations and imaging resolution of cell membrane and biomolecules in living cells are tested using one-photon and 3D multiphoton fluorescence microscopy, respectively. Consequently, HNPs present approximately 25 times enhanced intensity compared to controls and obtained an axial and lateral resolution of 110 and 210 nm of the intensities of fluorophores conjugated with biomolecules transported in living cells. These structures can be a great platform to analyse complex intracellular environment.


2021 ◽  
Vol 22 (4) ◽  
pp. 1903
Author(s):  
Ivona Kubalová ◽  
Alžběta Němečková ◽  
Klaus Weisshart ◽  
Eva Hřibová ◽  
Veit Schubert

The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200–250 nm laterally, ~500–700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4′,6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.


2020 ◽  
Vol 52 (1) ◽  
pp. 369-393
Author(s):  
Minami Yoda

Quantifying submillimeter flows using optical diagnostic techniques is often limited by a lack of spatial resolution and optical access. This review discusses two super-resolution imaging techniques, structured illumination microscopy and total internal reflection fluorescence or microscopy, which can visualize bulk and interfacial flows, respectively, at spatial resolutions below the classic diffraction limits. First, we discuss the theory and applications of structured illumination for optical sectioning, i.e., imaging a thin slice of a flow illuminated over its entire volume. Structured illumination can be used to visualize the interior of multiphase flows such as sprays by greatly reducing secondary scattering. Second, the theory underlying evanescent waves is introduced, followed by a review of how total internal reflection microscopy has been used to visualize interfacial flows over the last 15 years. Both techniques, which are starting to be used in fluid mechanics, could significantly improve quantitative imaging of microscale and macroscale flows.


Nanophotonics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 2111-2128 ◽  
Author(s):  
Jialei Tang ◽  
Jinhan Ren ◽  
Kyu Young Han

AbstractFluorescence microscopy has long been a valuable tool for biological and medical imaging. Control of optical parameters such as the amplitude, phase, polarization, and propagation angle of light gives fluorescence imaging great capabilities ranging from super-resolution imaging to long-term real-time observation of living organisms. In this review, we discuss current fluorescence imaging techniques in terms of the use of tailored or structured light for the sample illumination and fluorescence detection, providing a clear overview of their working principles and capabilities.


Sign in / Sign up

Export Citation Format

Share Document