Status of Review of Applications and Issues of License Renewal by the Materials and Chemical Engineering Staff at the U.S. Nuclear Regulatory Commission

Author(s):  
Merrilee Banic
Author(s):  
Garry G. Young

As of January 2013, the U.S. Nuclear Regulatory Commission (NRC) has renewed the operating licenses of 73 nuclear units out of a total of 104 licensed units, allowing for up to 60 years of safe operation. In addition, the NRC has license renewal applications under review for 15 units and more than 13 additional units have announced plans to submit applications over the next few years [1]. This brings the total of renewed licenses and plans for renewal to over 97% of the 104 operating nuclear units in the U.S. This paper presents the status of the U.S. license renewal process and issues being raised for possible applications for subsequent renewals for up to 80 years of operation. By the end of 2013 there will be 26 nuclear plants in the U.S. (or 25% of the 104 units) that will be eligible to seek a second license renewal and by the end of 2016 this number will increase to about 50% of the 104 licensed units. Although some nuclear plant owners have announced plans to shutdown before reaching 60 years, the majority are keeping the option open for long term operation beyond 60 years. The factors that impact decisions for both the first license renewals and subsequent renewals for 80 years of safe operation are presented and discussed in this paper.


Author(s):  
W. Boyd Taylor ◽  
Katherine J. Knobbs ◽  
C. E. Gene Carpenter ◽  
Shah N. Malik

The majority of the U.S. reactor fleet is applying for license renewal to extend the operating life from the current 40 years to 60 years, and there is now active interest in extending the operating life to beyond 60 years. Many plants are also applying for increases in power rating and both of these changes increases the need for an improved understanding of materials degradation. Many materials degrade over time and much is known about the degradation of materials under normal environmental conditions; however, less is known about the characteristics of materials degradation when the environment is subject to higher than normal radiological conditions over extended periods of time. Significant efforts are being made by industrial, academic and regulatory groups worldwide to identify, classify and mitigate potential problems arising from degradation of components in this context. From a regulatory perspective, the U.S. Nuclear Regulatory Commission (NRC) is very interested in being able to identify ways to ensure their licensees proactively manage the identification of materials degradation and the mitigation of its effects. To date, the NRC has consolidated “generic” programs for mitigating aging issues in the two volume Generic Aging Lessons Learned (GALL) Report (NUREG-1801) and has encouraged applicants for license renewal to use these programs where applicable in their plant when applying for renewal of their reactor’s license. The NRC has also published a comprehensive report entitled Expert Panel Report on Proactive Materials Degradation (NUREG/CR-6923) [3]. This report inventories the types of degradation mechanisms that could exist in each component of a light water reactor (LWR) and indicates how much is known about mitigating the effects within that context. Since the number of plant designs and materials used varies greatly within the U.S. fleet, there are many variations to implementing aging management programs (AMPs), requiring significant dialogs between the licensee and the NRC. These discussions are part of the licensing basis and as such are documented with up to multi-hundred page responses that are loosely coupled through the NRC Agency-wide Document Access and Management System (ADAMS). ADAMS serves as an electronic records repository for the NRC. These discussions have supported revisions to the GALL, including the revision that is being prepared as this paper is being written. The NRC has sought the help of the Pacific Northwest National Laboratory (PNNL) to improve their staff’s ability to navigate the significant numbers of documents that are generated in this process. PNNL is also to provide a forum for regulators, licensees, and researchers to share knowledge in their efforts to improve the cyclic process for defining, applying, validating, and re-defining AMPs. Work to date in this area is publicly accessible, and this paper will describe that work and outline a potential path forward. The presenter will also demonstrate the capabilities of the PMMD information tools (http://pmmd.pnl.gov).


Author(s):  
Wendy J. Reece ◽  
Susan G. Hill

A set of radiation overexposure event reports were reviewed as part of a program to examine human performance in industrial radiography for the U.S. Nuclear Regulatory Commission. Incident records for a seven year period were retrieved from an event database. Ninety-five exposure events were initially categorized and sorted for further analysis. Descriptive models were applied to a subset of severe overexposure events. Modeling included: (1) operational sequence tables to outline the key human actions and interactions with equipment, (2) human reliability event trees, (3) an application of an information processing failures model, and (4) an extrapolated use of the error influences and effects diagram. Results of the modeling analyses provided insights into the industrial radiography task and suggested areas for further action and study to decrease overexposures.


Author(s):  
Jeffrey G. Arbital ◽  
Dean R. Tousley ◽  
James C. Anderson

The National Nuclear Security Administration (NNSA) is shipping bulk quantities of fissile materials for disposition purposes, primarily highly enriched uranium (HEU), over the next 15 to 20 years. The U.S. Department of Transportation (DOT) specification 6M container has been the workhorse for NNSA and many other shippers of radioactive material. However, the 6M does not conform to the safety requirements in the Code of Federal Regulations (10 CFR 71[1]) and, for that reason, is being phased out for use in the secure transportation system of the U.S. Department of Energy (DOE) in early 2006. BWXT Y-12 is currently developing the replacement for the DOT 6M container for NNSA and other users. The new package is based on state-of-the-art, proven, and patented technologies that have been successfully applied in the design of other packages. The new package will have a 50% greater capacity for HEU than the 6M, and it will be easier to use with a state-of-the-art closure system on the containment vessel. This new package is extremely important to the future of fissile, radioactive material transportation. An application for license was submitted to the U.S. Nuclear Regulatory Commission (NRC) in February 2005. This paper reviews the license submittal, the licensing process, and the proposed contents of this new state-of-the-art shipping container.


Author(s):  
Russell Wagner

The U.S. Nuclear Regulatory Commission (NRC) has provided set guidance that hydrogen concentrations in radioactive material packages be limited to 5 vol% unless the package is designed to withstand a bounding hydrogen deflagration or detonation. The NRC guidance further specifies that the expected shipping time for a package be limited to one-half the time to reach 5 vol% hydrogen. This guidance has presented logistical problems for transport of retrieved legacy waste packages on the Department of Energy (DOE) Hanford Site that frequently contain greater than 5 vol% hydrogen due to their age and the lack of venting requirements at the time they were generated. Such packages do not meet the performance-based criteria for Type B packaging, and are considered risk-based packages. Duratek Technical Services (Duratek) has researched the true risk of hydrogen deflagration and detonation with closed packages, and has developed technical justification for elevated concentration limits of up to 15 vol% hydrogen in risk-based packages when transport is limited to the confines of the Hanford Site. Duratek has presented elevated hydrogen limit justification to the DOE Richland Operations Office and is awaiting approval for incorporation into the Hanford Site Transportation Safety Document. This paper details the technical justification methodology for the elevated hydrogen limits.


Author(s):  
David Alley

This paper provides a historical perspective on the need for, and development of, buried and underground piping tanks programs at nuclear power plants. Nuclear power plant license renewal activities, Nuclear Regulatory Commission Buried Piping Action Plan, and the rationale for addressing the issue of buried pipe through an industry initiative as opposed to regulation are discussed. The paper also addresses current NRC activities including the results of Nuclear Regulatory Commission inspections of buried piping programs at nuclear power plants as well as Nuclear Regulatory Commission involvement in industry and standards development organizations. Finally, the paper outlines the Nuclear Regulatory Commission’s future plans concerning the issue of buried piping at US nuclear power plants.


Sign in / Sign up

Export Citation Format

Share Document