Passive Film Formation and Localized Corrosion

Author(s):  
Vincent Maurice ◽  
Alexis Markovits ◽  
Christian Minot ◽  
Philippe Marcus
Author(s):  
Yi Huang ◽  
Yunze Xu ◽  
Xiaona Wang ◽  
Shide Song ◽  
Lujia Yang

Reinforced concrete is one of the most widely used construction materials for marine structures. Due to the abundance of the aggressive ions such as chloride ions and sulfate ions in the seawater, the reinforcement exposed to the marine and costal environment are exposed to a high corrosion risk. Localized corrosion will occur once the passive film on the rebar is damaged. In this work, the corrosion behavior of the steel in the simulated pore solution containing with both sulfate ions and chloride ions are studied by using cyclic potentialdynamic polarization methods and the corrosion morphologies observed using scanning electron microscope (SEM). The test results show that the initial rebar corrosion is caused by the absorption of the chloride ions in the passive film. The sulfate ions nearly had no effect on the corrosion of the rebar in pore solution and it can further mitigate the pitting corrosion in chloride containing pore solution.


CORROSION ◽  
10.5006/3574 ◽  
2020 ◽  
Author(s):  
Ronald Clark ◽  
James Humpage ◽  
Robert Burrows ◽  
Hugh Godfrey ◽  
Mustufa Sagir ◽  
...  

Magnesium (Mg) non-oxidizing alloy, known as Magnox, was historically used as a fuel cladding material for the first-generation of carbon dioxide (CO<sub>2</sub>) gas-cooled nuclear reactors in the UK. Waste Magnox is currently stored in cooling ponds, pending final disposal. The corrosion resistance of Mg and its alloys is relatively poor, compared to modern cladding materials such as zirconium (Zr) alloys, so it is important to have a knowledge of the chloride concentration/pH dependence on breakdown and localized corrosion characteristics prior to waste retrievals taking place. Our results show that Magnox exhibits passivity in high pH solutions, with charge transfer resistance and passive film thicknesses showing an increase with immersion time. When chloride is added to the system the higher pH maintains Magnox passivity, as shown through a combination of potentiodynamic and time-lapse/post corrosion imaging experiments. Potentiodynamic polarization of Magnox reveals a -229 mV<sup>-decade</sup> linear dependence of breakdown potential with chloride ion concentration. The use of the scanning vibrating electrode technique (SVET) enabled the localized corrosion characteristics to be followed. At high pH where Magnox is passive, at low chloride concentrations, the anodes which form predominantly couple to the visually intact surface in the vicinity of the anode. The high pH however means that visually intact Magnox in the vicinity of the anode is less prone to breakdown, restricting anode propagation such that they remain largely static. In high chloride concentrations the higher conductivity means that the anode and cathode can couple over greater distances and so propagation along the surface can occur at a much faster rate, with the visually intact surface acting as a distributed cathode. In addition, the chloride anion itself, when present at high concentration will play a role in rapid passive film dissolution, enabling rapid anode propagation.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
M. Shah ◽  
M. T. M. Ayob ◽  
R. Rosdan ◽  
N. Yaakob ◽  
Z. Embong ◽  
...  

H2S gas when exposed to metal can be responsible for both general and localized corrosion, which depend on several parameters such as H2S concentration and the corrosion product layer formed. Therefore, the formation of passive film on 316L steel when exposed to H2S environment was investigated using several analysis methods such as FESEM and STEM/EDS analyses, which identified a sulfur species underneath the porous structure of the passive film. X-ray photoelectron spectroscopy analysis demonstrated that the first layer of CrO3 and Cr2O3 was dissolved, accelerated by the presence of H2S-Cl-. An FeS2 layer was formed by incorporation of Fe and sulfide; then, passivation by Mo took place by forming a MoO2 layer. NiO, Ni(OH)2, and NiS barriers are formed as final protection for 316L steel. Therefore, Ni and Mo play an important role as a dual barrier to maintain the stability of 316L steel in high pH2S environments. For safety concern, this paper is aimed to point out a few challenges dealing with high partial pressure of H2S and limitation of 316L steel under highly sour condition for the oil and gas production system.


2020 ◽  
Vol MA2020-02 (8) ◽  
pp. 1161-1161
Author(s):  
Yusi Xie ◽  
Minglu Liu ◽  
Ashlee Aeillo ◽  
Karl Sieradzki

2019 ◽  
Vol 166 (11) ◽  
pp. C3071-C3080 ◽  
Author(s):  
Cem Örnek ◽  
Marie Långberg ◽  
Jonas Evertsson ◽  
Gary Harlow ◽  
Weronica Linpé ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document