Ion Channels and Electrical Activity in Pituitary Cells: A Modeling Perspective

2016 ◽  
pp. 80-110
Author(s):  
Richard Bertram ◽  
Joël Tabak ◽  
Stanko S. Stojilkovic
Author(s):  
R H. Selinfreund ◽  
A. H. Cornell-Bell

Cellular electrophysiological properties are normally monitored by standard patch clamp techniques . The combination of membrane potential dyes with time-lapse laser confocal microscopy provides a more direct, least destructive rapid method for monitoring changes in neuronal electrical activity. Using membrane potential dyes we found that spontaneous action potential firing can be detected using time-lapse confocal microscopy. Initially, patch clamp recording techniques were used to verify spontaneous electrical activity in GH4\C1 pituitary cells. It was found that serum depleted cells had reduced spontaneous electrical activity. Brief exposure to the serum derived growth factor, IGF-1, reconstituted electrical activity. We have examined the possibility of developing a rapid fluorescent assay to measure neuronal activity using membrane potential dyes. This neuronal regeneration assay has been adapted to run on a confocal microscope. Quantitative fluorescence is then used to measure a compounds ability to regenerate neuronal firing.The membrane potential dye di-8-ANEPPS was selected for these experiments. Di-8- ANEPPS is internalized slowly, has a high signal to noise ratio (40:1), has a linear fluorescent response to change in voltage.


Nano Futures ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 025008 ◽  
Author(s):  
Weiwei Zhou ◽  
Luye Mu ◽  
Jinfeng Li ◽  
Mark Reed ◽  
Peter J Burke

1988 ◽  
Vol 139 (1) ◽  
pp. 287-316
Author(s):  
W. T. Mason ◽  
S. R. Rawlings ◽  
P. Cobbett ◽  
S. K. Sikdar ◽  
R. Zorec ◽  
...  

Normal anterior pituitary cells, in their diversity and heterogeneity, provide a rich source of models for secretory function. However, until recently they have largely been neglected in favour of neoplastic, clonal tumour cell lines of pituitary origin, which have enabled a number of studies on supposedly homogeneous cell types. Because many of these lines appear to lack key peptide and neurotransmitter receptors, as well as being degranulated with accompanying abnormal levels of secretion, we have developed a range of normal primary anterior pituitary cell cultures using dispersion and enrichment techniques. By studying lactotrophs, somatotrophs and gonadotrophs we have revealed a number of possible transduction mechanisms by which receptors for hypothalamic peptides and neurotransmitters may control secretion. In particular, the transduction events controlling secretion from pituitary cells may differ fundamentally from those found in other cell types. Patch-clamp recordings in these various pituitary cell preparations have revealed substantial populations of voltage-dependent Na+, Ca2+ and K+ channels which may support action potentials in these cells. Although activation of these channels may gate Ca2+ entry to the cells under some conditions, our evidence taken with that of other laboratories suggests that peptide-receptor interactions leading to hormone secretion occur independently of significant membrane depolarization. Rather, secretion of hormone and rises in intracellular calcium measured with new probes for intracellular calcium activity, can occur in response to hypothalamic peptide activation in the absence of substantial changes in membrane potential. These changes in intracellular calcium activity almost certainly depend on both intracellular and extracellular calcium sources. In addition, strong evidence of a role for multiple intracellular receptors and modulators in the secretory event suggests we should consider the plasma membrane channels important for regulation of hormone secretion to be predominantly agonist-activated, rather than of the more conventional voltage-dependent type. Likewise, evidence from new methods for recording single ion channels suggests the existence of intracellular sites for channel modulation, implying they too may play an important role in secretory regulation. We shall consider new data and new technology which we hope will provide key answers to the many intriguing questions surrounding the control of pituitary hormone secretion. We shall highlight our work with recordings of single ion channels activated by peptides, and recent experiments using imaging of intracellular ionized free calcium.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
pp. 267-275 ◽  
Author(s):  
M. KUČKA ◽  
K. KRETSCHMANNOVÁ ◽  
S. S. STOJILKOVIC ◽  
H. ZEMKOVÁ ◽  
M. TOMIĆ

All secretory anterior pituitary cells fire action potentials spontaneously and exhibit a high resting cation conductance, but the channels involved in the background permeability have not been identified. In cultured lactotrophs and immortalized GH3 cells, replacement of extracellular Na+ with large organic cations, but not blockade of voltage-gated Na+ influx, led to an instantaneous hyperpolarization of cell membranes that was associated with a cessation of spontaneous firing. When cells were clamped at –50 mV, which was close to the resting membrane potential in these cells, replacement of bath Na+ with organic cations resulted in an outward-like current, reflecting an inhibition of the inward holding membrane current and indicating loss of a background-depolarizing conductance. Quantitative RT-PCR analysis revealed the high expression of mRNA transcripts for TRPC1 and much lower expression of TRPC6 in both lactotrophs and GH3 cells. Very low expression of TRPC3, TRPC4, and TRPC5 mRNA transcripts were also present in pituitary but not GH3 cells. 2-APB and SKF-96365, relatively selective blockers of TRPC channels, inhibited electrical activity, Ca2+ influx and prolactin release in a concentration-dependent manner. Gd3+, a common Ca2+ channel blocker, and flufenamic acid, an inhibitor of non-selective cation channels, also inhibited electrical activity, Ca2+ influx and prolactin release. These results indicate that nonselective cation channels, presumably belonging to the TRPC family, contribute to the background depolarizing conductance and firing of action potentials with consequent contribution to Ca2+ influx and hormone release in lactotrophs and GH3 cells.


2016 ◽  
Vol 2 (12) ◽  
pp. e1600516 ◽  
Author(s):  
Paulo R. F. Rocha ◽  
Maria C. R. Medeiros ◽  
Ulrike Kintzel ◽  
Johannes Vogt ◽  
Inês M. Araújo ◽  
...  

Glioma patients often suffer from epileptic seizures because of the tumor’s impact on the brain physiology. Using the rat glioma cell line C6 as a model system, we performed long-term live recordings of the electrical activity of glioma populations in an ultrasensitive detection method. The transducer exploits large-area electrodes that maximize double-layer capacitance, thus increasing the sensitivity. This strategy allowed us to record glioma electrical activity. We show that although glioma cells are nonelectrogenic, they display a remarkable electrical burst activity in time. The low-frequency current noise after cell adhesion is dominated by the flow of Na+ions through voltage-gated ion channels. However, after an incubation period of many hours, the current noise markedly increased. This electric bursting phenomenon was not associated with apoptosis because the cells were viable and proliferative during the period of increased electric activity. We detected a rapid cell culture medium acidification accompanying this event. By using specific inhibitors, we showed that the electrical bursting activity was prompted by extracellular pH changes, which enhanced Na+ion flux through the psalmotoxin 1–sensitive acid-sensing ion channels. Our model of pH-triggered bursting was unambiguously supported by deliberate, external acidification of the cell culture medium. This unexpected, acidosis-driven electrical activity is likely to directly perturb, in vivo, the functionality of the healthy neuronal network in the vicinity of the tumor bulk and may contribute to seizures in glioma patients.


2012 ◽  
Vol 303 (7) ◽  
pp. H766-H783 ◽  
Author(s):  
Byron N. Roberts ◽  
Pei-Chi Yang ◽  
Steven B. Behrens ◽  
Jonathan D. Moreno ◽  
Colleen E. Clancy

Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy.


Sign in / Sign up

Export Citation Format

Share Document