Recent Progress on Oxygen Delignification of Softwood Kraft Pulp

2018 ◽  
pp. 67-97 ◽  
Author(s):  
Adriaan R. P. van Heiningen ◽  
Yun Ji ◽  
Vahid Jafari
Holzforschung ◽  
2004 ◽  
Vol 58 (6) ◽  
pp. 603-610 ◽  
Author(s):  
Martin Lawoko ◽  
Rickard Berggren ◽  
Fredrik Berthold ◽  
Gunnar Henriksson ◽  
Göran Gellerstedt

Abstract Three kraft pulps in the kappa number range between 50 and 20 and the same pulps oxygen-delignified to similar lignin contents (kappa approximately 6) were analyzed for lignin-carbohydrate complexes (LCC) by a method based on selective enzymatic hydrolysis of the cellulose, and quantitative fractionation of the LCC. Between 85 and 90% of residual lignin in the unbleached kraft pulp and all residual lignin in the oxygen-delignified pulps were isolated as LCC. Three types of complexes were found; viz., xylan-lignin, glucomannan-lignin-xylan and glucanlignin complexes. After pulping to a high kappa number, most of the residual lignin was linked to xylan. Different delignification rates were observed so that most of the residual lignin was linked to glucomannan when the pulping was extended to a low kappa number. With increasing degree of oxygen delignification, a similar trend in the delignification rates of LCC was observed so that the residual lignin was increasingly linked to glucomannan. Complex LCC network structures seemed to be degraded into simpler structures during delignification. The differences in delignification rates are discussed with reference to the solubility properties and structural differences of LCC, and to morphological aspects of the pulp.


2004 ◽  
Vol 19 (2) ◽  
pp. 264-270 ◽  
Author(s):  
Minna Sankari ◽  
Kari Ala-Kaila ◽  
Olli Dahl ◽  
Paavo Perämäki

2001 ◽  
Vol 73 (12) ◽  
pp. 2059-2065
Author(s):  
Lucian A. Lucia ◽  
Rachel S. Smereck

A series of oxygen delignification experiments were performed on two softwood kraft pulps that had differing starting lignin contents. One had an initial kappa of 40 and the other 25, corresponding to lignin contents of 6% and 3.75% by dry mass, respectively. Several chemical process modifications were examined to determine their influence over the delignification selectivity and final pulp viscosity. A 2k factorial format was used to assess the significance of varying the temperature, time, and Mg/Mn ratio during the oxygen delignification of the pulps. It was found that the lower lignin content pulp displayed greater delignification selectivity than the higher lignin content pulp. Kappa numbers, viscosity values, and ICP metals contents were determined and are the basis of discussion for the results obtained.


2001 ◽  
Vol 79 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Leonid G Akim ◽  
Jorge Luiz Colodette ◽  
Dimitris S Argyropoulos

Softwood kraft pulp was subjected to a laboratory one- and three-stage oxygen delignification process. Pulp and liquor samples were collected at different stages of the process with particular attention being paid to the early and late stages. A novel residual lignin isolation method extracted about 65% of the oxidized residual lignins at a purity exceeding 90%. Using this methodology coupled to quantitative 31P NMR, 13C NMR, 2D heteronuclear (HMQC) NMR spectroscopic and analytical pyrolysis techniques allowed a thorough characterization of the residual and solubilized lignin fractions at the various stages of the process. Our conclusions do not point to a single factor as being responsible for the limits confronting oxygen delignification. Amongst the major factors impeding the effectiveness of oxygen delignification are: (i) the accumulation of relatively inert 5,5' biphenyl structures originally present in kraft lignin from dibenzodioxocin ring opening reactions; and (ii) the accumulation of considerably less reactive p-hydroxyphenyl structures. Detailed quantitative information was obtained and discussed in relation to the presence and role of these unreactive phenolic fractions on the residual oxidized lignins. As such we arrived at important conclusions as to why and how these structures remain and accumulate on the fiber. In addition, issues related to the profiles of the total phenolic hydroxyl content of the residual lignins and the remaining arylglycerol β-O-4 structures are discussed.Key words: analytical pyrolysis, biphenyl structures, HMQC, NMR, oxidation mechanism, oxygen delignification, p-hydroxyphenyl moieties, quantitative 13C NMR, quantitative 31P NMR, residual lignin, solubilized lignin, total phenolic hydroxyls.


Holzforschung ◽  
2006 ◽  
Vol 60 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Dongcheng Zhang ◽  
Yunqiao Pu ◽  
Xing-Sheng Chai ◽  
Ved Naithani ◽  
Hasan Jameel ◽  
...  

Abstract Two laboratory high-lignin-content softwood (SW) kraft pulps with kappa values of 48.0 and 49.5, prepared by cooking at high and low active alkali (AA), were used for the study of fiber charge development during two-stage oxygen delignification with inter-stage washing (OwO). It was established that the first oxygen delignification (O) stage increased total fiber charge by 2–4%, and further O-delignification via a second O-stage led to a 3–18% decrease in total fiber charge. Carboxylic acid content in pulp holocelluloses decreased by 12–26% with respect to a 35–70% kappa number reduction due to an O and OwO stage of delignification for high and low AA cooked SW kraft pulps. After an OwO-stage delignification, the residual lignin was found to exhibit a 50–100% increase in carboxylic acid content. 13C NMR spectral data for the residual lignin samples indicated that the unconjugated/conjugated acid ratio was approximately (3–4):1. Generally, the carboxylic acid content in low AA cooked softwood kraft pulp and the corresponding oxygen-delignified pulps was systematically higher (13–23%) than that in high AA cooked SW kraft pulp and the corresponding oxygen-delignified pulps. The experimental results also demonstrated that maximum acid-group content in total fiber occurred after 45–50% oxygen delignification of the SW kraft pulps studied.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (9) ◽  
pp. 47-53 ◽  
Author(s):  
BRIAN N. BROGDON

Our previous investigation [1] re-analyzed the data from Basta and co-workers (1992 TAPPI Pulping Conference) to demonstrate how oxidative alkaline extraction can be augmented and how these changes affect chlorine dioxide consumption with elemental chlorine-free (ECF) sequences. The current study manipulates extraction delignification variables to curtail bleaching costs with a conventional U.S. Southern softwood kraft pulp. The economic advantages of ~0.35% to 0.65% H2O2 peroxide reinforcement in a 70°C (EOP)-stage versus 90°C (EO)-stage are predisposed to the brightness targets, to short or long bleach sequences, and to mill energy costs. Minimized bleaching costs are generally realized when a 90°C (EO) is employed in D0(EO)D1 bleaching, whereas a 70°C (EOP) is economically advantageous for D0(EOP)D1E2D2 bleaching. The findings we disclose here help to clarify previous ECF optimization studies of conventional softwood kraft pulps.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 157-164 ◽  
Author(s):  
Shengdan Wang ◽  
Wenhua Gao ◽  
Kefu Chen ◽  
Jinsong Zeng ◽  
Jun Xu ◽  
...  

Cellulose nanofibrils (CNF) were prepared by cellulase in conjunction with mechanical disintegration from the bleached softwood kraft pulp and labelled by Congo red dye. The labelled CNF were used to investigate the retention and distribution of CNF in paper handsheets. The retention of the labelled CNF was obtained by measuring the absorbance of white water using an ultraviolet-visible spectrophotometer. The results showed that this method for measuring the retention was rapid, feasible, and sensitive, owing to the high correlation coefficient R2 (0.9993) of the standard curve. The labelled CNF showed even distribution in paper handsheets. The colorimetric values of paper handsheets were explored with a residual ink analyzer.


Sign in / Sign up

Export Citation Format

Share Document