Optimization of elemental chlorine-free bleaching for a softwood kraft pulp • part 2: economic analysis of chemical and steam consumption

TAPPI Journal ◽  
2010 ◽  
Vol 9 (9) ◽  
pp. 47-53 ◽  
Author(s):  
BRIAN N. BROGDON

Our previous investigation [1] re-analyzed the data from Basta and co-workers (1992 TAPPI Pulping Conference) to demonstrate how oxidative alkaline extraction can be augmented and how these changes affect chlorine dioxide consumption with elemental chlorine-free (ECF) sequences. The current study manipulates extraction delignification variables to curtail bleaching costs with a conventional U.S. Southern softwood kraft pulp. The economic advantages of ~0.35% to 0.65% H2O2 peroxide reinforcement in a 70°C (EOP)-stage versus 90°C (EO)-stage are predisposed to the brightness targets, to short or long bleach sequences, and to mill energy costs. Minimized bleaching costs are generally realized when a 90°C (EO) is employed in D0(EO)D1 bleaching, whereas a 70°C (EOP) is economically advantageous for D0(EOP)D1E2D2 bleaching. The findings we disclose here help to clarify previous ECF optimization studies of conventional softwood kraft pulps.

TAPPI Journal ◽  
2010 ◽  
Vol 9 (8) ◽  
pp. 27-35 ◽  
Author(s):  
BRIAN N. BROGDON

The present investigation meticulously analyzes how oxidative alkaline extraction can be augmented through process changes, and how these augmentations can be leveraged to optimize chlorine dioxide usage with elemental chlorine-free (ECF) sequences for a conventional softwood kraft pulp. Bleaching data from Basta and co-workers (1992 TAPPI Pulping Conference) are re-examined and re-interpreted in this study. We determined that ~60% to 65% of the overall ClO2 charge should be applied in the D0-stage. Peroxide addition to an (EOP) can replace 0.6 to 2.5 Kg. ClO2 per Kg H2O2. Boosting the (EO) temperature to 80°C is equivalent to a 70°C (EOP) with 0.25% to 0.30% H2O2,whereas a 90°C (EO) is equivalent to 0.50% – 0.75% H2O2 in a 70°C (EOP). The stoichiometric bleaching data from this study can guide decision-making for lowering chemical usage and minimize costs to reach target brightness levels with three- and five-stage sequences.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (10) ◽  
pp. 33-41 ◽  
Author(s):  
BRIAN N. BROGDON

This investigation evaluates how higher reaction temperatures or oxidant reinforcement of caustic extraction affects chlorine dioxide consumption during elemental chlorine-free bleaching of North American hardwood pulps. Bleaching data from the published literature were used to develop statistical response surface models for chlorine dioxide delignification and brightening sequences for a variety of hardwood pulps. The effects of higher (EO) temperature and of peroxide reinforcement were estimated from observations reported in the literature. The addition of peroxide to an (EO) stage roughly displaces 0.6 to 1.2 kg chlorine dioxide per kilogram peroxide used in elemental chlorine-free (ECF) bleach sequences. Increasing the (EO) temperature by Δ20°C (e.g., 70°C to 90°C) lowers the overall chlorine dioxide demand by 0.4 to 1.5 kg. Unlike what is observed for ECF softwood bleaching, the presented findings suggest that hot oxidant-reinforced extraction stages result in somewhat higher bleaching costs when compared to milder alkaline extraction stages for hardwoods. The substitution of an (EOP) in place of (EO) resulted in small changes to the overall bleaching cost. The models employed in this study did not take into account pulp bleaching shrinkage (yield loss), to simplify the calculations.


Holzforschung ◽  
2014 ◽  
Vol 68 (7) ◽  
pp. 733-746 ◽  
Author(s):  
Susanna Kuitunen ◽  
Ville Tarvo ◽  
Tiina Liitiä ◽  
Stella Rovio ◽  
Tapani Vuorinen ◽  
...  

Abstract A comprehensive model for alkaline extraction (E) of chlorine dioxide delignified (D0) softwood kraft pulp (KP) is presented. The dynamics of the process is modeled by taking into account both irreversible and reversible chemical reactions and gas-liquid and liquid-liquid mass transfer. Equations linking molecular-scale composition (amounts of monomeric lignin and carbohydrate structures) and general engineering parameters [κ number (KN), brightness, intrinsic viscosity, total organic carbon (TOC), chemical oxygen demand (COD), etc.] are presented. The model is capable of reproducing the development of KN and brightness from the molecular-level kinetics. Reactions responsible for the darkening of chlorine dioxide bleached (D0) pulp in alkali, brightening of pulp due to the action of hydrogen peroxide and oxygen, and reduction in KN were identified. The model predicts the chemical composition of both fiber wall and filtrate. This feature enables studies concerning the interaction of the AE chemistry with upstream (D0 washing) and downstream (D1 stage) processes. Quantitative physicochemical modeling approach also points out shortcoming in the present knowledge.


2013 ◽  
Vol 634-638 ◽  
pp. 386-390
Author(s):  
Zhi Li ◽  
Jun Li ◽  
Jun Xu

Elemental Chlorine Free (ECF) bleaching sequence of O1/O2D0EOPD1D2 was adopted to bleach the pro-hydrolyzed Larix kraft pulp, where O1/O2 was two-stage oxygen delignification without interstage treatment, D was chlorine dioxide bleaching, EOP was pressurized alkaline extraction strengthened by hydrogen peroxide. Keeping bleaching temperature and time unchanged, sodium hydroxide charge(NaOH) in O1 stage, chlorine dioxide(ClO2) charge in D0 stage and D2 stage were studied, pulp properties such as brightness, kappa number, alpha-cellulose, pentosan and polymerization degree were measured and compared to establish optimal bleaching conditions. Results show that the optimal charge of NaOH in O1 stage is 2.5%, ClO2 in D0 and D2 stage are 2.5%, 0.6%, and the pulp gained at the optimal bleaching conditions has the properties of 93.9% of alpha-cellulose, 2.60% of pentosan, 375.5 ml/g of viscosity and 86.6%ISO of brightness.


Holzforschung ◽  
2005 ◽  
Vol 59 (2) ◽  
pp. 110-115 ◽  
Author(s):  
Doug R. Svenson ◽  
Hou-min Chang ◽  
Hasan Jameel ◽  
John F. Kadla

Abstract The affect of phenolic hydroxyl groups on the reaction efficiency during chlorine dioxide pre-bleaching of a softwood kraft pulp was investigated. The removal of phenolic hydroxyl groups via pulp methylation did not adversely affect the chlorine dioxide bleaching efficiency or the amount of chlorate formed during exposure to chlorine dioxide. Ion analysis of the reaction systems revealed that the formation of chloride and chlorite ions during the bleaching process were very similar between the kraft and methylated kraft pulps. These results indicate that the kinetic rates of lignin oxidation by chlorine dioxide and its reduction products, chlorite and hypochlorous acid, are much faster than the rate of inorganic reactions leading to chlorate formation.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (11) ◽  
pp. 689-694
Author(s):  
QINGZHI MA ◽  
QI WANG ◽  
CHU WANG ◽  
NIANJIE FENG ◽  
HUAMIN ZHAI

The effect of oxygen (O2)-delignified pine kraft pulp pretreatment by high-purity, thermostable, and alkaline-tolerant xylanases on elemental chlorine free (ECF) bleaching of O2-delignification kraft pulp was studied. The study found that xylanase pretreatment preserved the intrinsic viscosity and yield of O2-delignified pulp while causing about 7% of delignification with high delignification selectivity. The xylanases with high purity, higher thermostability (75°C~80°C) in highly alkaline media (pH 8.0~9.5) could be applied on an industrial scale. Pulp pretreatment by the high-purity, thermostable, and alkaline tolerant xylanases could improve pulp brightness or reduce the chlorine dioxide (ClO2) consumption. In a D0ED1D2 bleaching sequence using the same amount of ClO2, the xylanase-pretreated pulp obtained a higher brightness (88.2% vs. 89.7% ISO) at the enzyme dose of 2 U/g pulp; or for the same brightness as control (88.2% ISO), the ClO2 dosage in the D0 stage was reduced by 27%, which represents a 16% savings in total ClO2 used for bleaching.


Holzforschung ◽  
2020 ◽  
Vol 74 (6) ◽  
pp. 597-604
Author(s):  
Sara Starrsjö ◽  
Olena Sevastyanova ◽  
Peter Sandström ◽  
Juha Fiskari ◽  
Maria Boman ◽  
...  

AbstractRecently, a new type of bleaching sequence, Elemental Chlorine Free (ECF) light with one D stage, has been developed. It combines the efficiency and high selectivity of chlorine dioxide (ClO2) bleaching with more environmental friendly oxygen based bleaching chemicals. This work examines the effect of pH on the formation of adsorbable organically bound halogens (AOX) in an intermediate D stage – a single ClO2 stage at the middle of an ECF light bleaching sequence. Carbon dioxide (CO2) is used to generate a bicarbonate buffer in situ, stabilizing the pH during the bleaching. Near-neutral pH is hypothesized to decrease the formation of strongly chlorinating species, so that the AOX formation is reduced. The results indicate that a near-neutral pH D stage can reduce the AOX content in the effluents with up to 30%. The ISO brightness was unchanged to a lower ClO2 consumption. The pulp viscosity was slightly higher after near-neutral pH D stage, but to its disadvantage a lesser delignification and removal of HexA was obtained. The degradation of HexA correlated well with the AOX, affirming earlier theories that HexA has a major impact on the AOX formation. The higher amounts of residual HexA and lignin resulted in more thermal yellowing of the pulps bleached with a near-neutral pH D stage.


Holzforschung ◽  
1999 ◽  
Vol 53 (5) ◽  
pp. 498-502 ◽  
Author(s):  
J. Sealey ◽  
A.J. Ragauskas ◽  
T.J. Elder

SummaryThe structure activity effects of 1-hydroxy benzotriazole and phthalimide derivatives as mediators for laccase were studied. Using a softwood kraft pulp it was shown that the N-hydroxy unit is a key component of 1-hydroxybenzotriazole for efficient laccase mediator delignification to occur. It was also found that the 1-hydroxybenzotriazole structure was very sensitive to substituent effects with respect to laccase-mediator delignification. Computational results from PM3 indicate that the bond dissociation energy, and electronic factors of the radical may contribute to the efficiency of the mediator for LMS delignification.


Holzforschung ◽  
2004 ◽  
Vol 58 (6) ◽  
pp. 603-610 ◽  
Author(s):  
Martin Lawoko ◽  
Rickard Berggren ◽  
Fredrik Berthold ◽  
Gunnar Henriksson ◽  
Göran Gellerstedt

Abstract Three kraft pulps in the kappa number range between 50 and 20 and the same pulps oxygen-delignified to similar lignin contents (kappa approximately 6) were analyzed for lignin-carbohydrate complexes (LCC) by a method based on selective enzymatic hydrolysis of the cellulose, and quantitative fractionation of the LCC. Between 85 and 90% of residual lignin in the unbleached kraft pulp and all residual lignin in the oxygen-delignified pulps were isolated as LCC. Three types of complexes were found; viz., xylan-lignin, glucomannan-lignin-xylan and glucanlignin complexes. After pulping to a high kappa number, most of the residual lignin was linked to xylan. Different delignification rates were observed so that most of the residual lignin was linked to glucomannan when the pulping was extended to a low kappa number. With increasing degree of oxygen delignification, a similar trend in the delignification rates of LCC was observed so that the residual lignin was increasingly linked to glucomannan. Complex LCC network structures seemed to be degraded into simpler structures during delignification. The differences in delignification rates are discussed with reference to the solubility properties and structural differences of LCC, and to morphological aspects of the pulp.


2007 ◽  
Vol 55 (6) ◽  
pp. 9-14
Author(s):  
Antero Luonsi

In the process of making high quality pulp from wood chips, much water will continuously be needed. The fate of the used water with the organic and inorganic impurities remains optional. Mills with zero liquid effluent have been mentioned as the target in environmental loading minimization of pulp and paper mills with hardly any debate. To avoid inappropriate solutions when approaching this target, thorough knowledge of loading element behavior in liquid streams of production processes should be available before decisions are made for development alternatives. Based on empirical measurements of dissolved organic matter (DOM) in liquid streams of fiberline and utilizing them together with routine mill data in process simulation, this study aims at mapping DOM and its fate in elemental chlorine free (ECF) softwood kraft pulp production. The results of this study act as a demonstration for determining the essential fates and their quantities in the ECF fiberline.


Sign in / Sign up

Export Citation Format

Share Document