Life Cycle Analysis and Carbon Footprint Reduction

2020 ◽  
pp. 291-302
Proceedings ◽  
2020 ◽  
Vol 57 (1) ◽  
pp. 80
Author(s):  
Luc Avérous

Nowadays, the use of renewable biobased carbon feedstock is highly taken into consideration because it offers the intrinsic value of a reduced carbon footprint with an improved life cycle analysis (LCA), in agreement with sustainable development. [...]


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
John Nicolet ◽  
Yolanda Mueller ◽  
Paola Paruta ◽  
Julien Boucher ◽  
Nicolas Senn

Abstract Background The medical field causes significant environmental impact. Reduction of the primary care practice carbon footprint could contribute to decreasing global carbon emissions. This study aims to quantify the average carbon footprint of a primary care consultation, describe differences between primary care practices (best, worst and average performing) in western Switzerland and identify opportunities for mitigation. Methods We conducted a retrospective carbon footprint analysis of ten private practices over the year 2018. We used life-cycle analysis to estimate carbon emissions of each sector, from manufacture to disposal, expressing results as CO2 equivalents per average consultation and practice. We then modelled an average and theoretical best- case and worst-case practices. Collected data included invoices, medical and furniture inventories, heating and power supply, staff and patient transport, laboratory analyses (in/out-house) waste quantities and management costs. Results An average medical consultation generated 4.8 kg of CO2eq and overall, an average practice produced 30 tons of CO2eq per year, with 45.7% for staff and patient transport and 29.8% for heating. Medical consumables produced 5.5% of CO2eq emissions, while in-house laboratory and X-rays contributed less than 1% each. Emergency analyses requiring courier transport caused 5.8% of all emissions. Support activities generated 82.6% of the total CO2eq. Simulation of best- and worst-case scenarios resulted in a ten-fold variation in CO2eq emissions. Conclusion Optimizing structural and organisational aspects of practice work could have a major impact on the carbon footprint of primary care practices without large-scale changes in medical activities.


Author(s):  
Ahmed J. Alsaffar ◽  
Karl R. Haapala ◽  
Kyoung-Yun Kim ◽  
Gül E. Okudan Kremer

Interest in accounting for environmental impacts of products, processes, and systems during the design phase is increasing. Numerous studies have undertaken investigations for reducing environmental impacts across the product life cycle. Efforts have also been launched to quantify such impacts more accurately. Energy consumption and carbon footprint are among the most frequently adopted and investigated environmental performance metrics. The purpose of this paper is to serve two objectives — first, it provides a review of recent developments for carbon footprint reduction in manufacturing processes and supply chain operations. Second, a future vision is shared toward developing a method for reducing carbon footprint through simultaneous consideration of manufacturing processes and supply chain activities. The approach is demonstrated by developing analytical models for alternative manufacturing processes and supply chain networks associated in the manufacture of a bicycle pedal plate to realize its potential in assessing energy and GHG (greenhouse gas) emissions. The sustainable design and manufacturing research community should benefit from the review presented. In addition, a point of departure for concurrent consideration of multiple stages of the product life cycle for environmental performance is established for the research community to move current efforts forward in pursuit of environmental, economic, and social sustainability.


2014 ◽  
Vol 584-586 ◽  
pp. 695-704 ◽  
Author(s):  
Fei Yun Tang

Carbon footprint calculation has important guiding significance to carbon emission reduction, especially the carbon footprint research of landscape engineering based on life cycle analysis fully reflects the whole condition of carbon emission in the construction process and effectively guide the whole process conducted with low-carbon. This essay preliminarily analyzes the condition of carbon footprint of life cycle in the construction project of landscape engineering, provides corresponding calculating boundary and calculating method for four stages--planning and design, construction, maintenance management and refurbishment and demolition, and proposes to pay attention to reduce hidden carbon footprint in the stage of planning and design and construction management. The explicit carbon footprint is supposed be reduced in the stage of construction and maintenance management through comprehensive coordination and reasonable material selection. Finally, try to estimate detailed carbon footprint by combining with the project case of unoccupied space landscape engineering of Wuhan Optics Valley Road, which aims at discussing calculating method and parameter of carbon footprint of specific landscape engineering, knowing the condition of carbon emission of each process and providing reference for relevant construction to reduce carbon footprint more effectively in future.


2016 ◽  
Vol 8 (3) ◽  
pp. 247 ◽  
Author(s):  
Fei Lun ◽  
Moucheng Liu ◽  
Dan Zhang ◽  
Wenhua Li ◽  
Junguo Liu

2017 ◽  
Vol 105 ◽  
pp. 3752-3757 ◽  
Author(s):  
Wencong Yue ◽  
Yanpeng Cai ◽  
Meirong Su ◽  
Qian Tan ◽  
Meng Xu

Sign in / Sign up

Export Citation Format

Share Document