Carbon Footprint Research of Landscape Engineering Based on Life Cycle Analysis — Take the Unoccupied Space Landscape Engineering of Wuhan Optics Valley Road (Optics Valley Road One — Liufang Road Section) for Example

2014 ◽  
Vol 584-586 ◽  
pp. 695-704 ◽  
Author(s):  
Fei Yun Tang

Carbon footprint calculation has important guiding significance to carbon emission reduction, especially the carbon footprint research of landscape engineering based on life cycle analysis fully reflects the whole condition of carbon emission in the construction process and effectively guide the whole process conducted with low-carbon. This essay preliminarily analyzes the condition of carbon footprint of life cycle in the construction project of landscape engineering, provides corresponding calculating boundary and calculating method for four stages--planning and design, construction, maintenance management and refurbishment and demolition, and proposes to pay attention to reduce hidden carbon footprint in the stage of planning and design and construction management. The explicit carbon footprint is supposed be reduced in the stage of construction and maintenance management through comprehensive coordination and reasonable material selection. Finally, try to estimate detailed carbon footprint by combining with the project case of unoccupied space landscape engineering of Wuhan Optics Valley Road, which aims at discussing calculating method and parameter of carbon footprint of specific landscape engineering, knowing the condition of carbon emission of each process and providing reference for relevant construction to reduce carbon footprint more effectively in future.

Author(s):  
Zhijie Feng ◽  
Lin Zhao ◽  
Shuai Wang ◽  
Qian Hou

The purpose of this paper was to analyze the development trend of hazardous chemical packaging towards low carbon economy from both qualitative and quantitative perspectives. Four types of relatively small volume packaging with volume/weight less than 450L/400kg, respectively, and three intermediate bulk containers (IBCs), which are widely used for hazardous chemicals were studied to calculate the carbon footprint (CF) from cradle to grave using life cycle assessment (LCA) method and to predict the future carbon emission of hazardous chemical packaging in the next five years (2016-2020), based on the export data of Tianjin Port in China. Grey model (GM) was adopted in the prediction. The results showed that majority of IBCs have lower carbon footprint than other types when the packaging contained same amount of same hazardous chemical. With the development of international trading, the demand of hazardous chemicals will increase as well. As the result, carbon emission generated by hazardous chemical packaging will increase accordingly. However, based on GM simulation result, increasing the amount of IBC use will effectively reduce the relative amount of carbon emission.


2019 ◽  
Vol 11 (3) ◽  
pp. 661
Author(s):  
Hui Zheng ◽  
Meng Xing ◽  
Ting Cao ◽  
Junxia Zhang

With the rapid development of industry, problems for the ecological environment are increasing day by day, among which carbon pollution is particularly serious. Product carbon emission accounting is the core of sustainable green design. In this paper, the beer fermentation cylinder is taken as an example for low carbon design to get the best combination of design parameters when the carbon emission is the smallest. The life cycle assessment method is used to calculate the carbon footprint of products. In order to analyse the uncertainty and sensitivity of the method, an uncertainty analysis method using data quality characteristics as input of Monte Carlo is proposed. Sensitivity analysis is carried out by multivariate statistical regression and Extended Fourier Amplitude Sensitivity Test (EFAST). The system boundary of fermentation cylinder is determined and the carbon emissions of life cycle are calculated. The quality characteristics of life cycle inventory data (LCI) data are analysed and Monte Carlo simulation is carried out to quantify the uncertainty of LCI. EFAST is used to calculate the sensitivity of LCI and the results are compared with those of multivariate statistical regression to verify the feasibility of the method. Finally, response surface methodology (RSM) is used to optimize the design of parameters. It provides guidance for the establishment of product carbon emission model and low carbon design.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Proceedings ◽  
2020 ◽  
Vol 57 (1) ◽  
pp. 80
Author(s):  
Luc Avérous

Nowadays, the use of renewable biobased carbon feedstock is highly taken into consideration because it offers the intrinsic value of a reduced carbon footprint with an improved life cycle analysis (LCA), in agreement with sustainable development. [...]


2013 ◽  
Vol 807-809 ◽  
pp. 1052-1058
Author(s):  
Zhe Wang ◽  
Yu Li ◽  
Ze Hong Li ◽  
Liang Yuan ◽  
Ji Zheng

Climate change caused by increasing carbon emission is harmful to global environment and human society. Developing low-carbon economy through reasonable industries planning and effective utilization of resources is a significant path to achieve the aim of energy saving and carbon emission reduction. The word carbon footprint means carbon emission caused by a certain industry, activity, product or individual, and the issue of carbon emission should be linked with economic activity to analyze, while input-output model is a reliable method to contact two factors. Based on input-output model, this paper calculated direct or indirect carbon emission which is demanded for the products of final consumption in Beijing, and analyzed carbon footprint of each industrial sector in 2005, 2007 and 2010 by operating Leontief matrix. The result demonstrates annual carbon emission of Beijing increased from 10482.68×104ton to 17407.28×104ton during 2000-2011. Manufacturing industry, excavating industry, transportation and postal industry exert supreme impact on carbon emission in Beijing. Carbon footprint of transportation and postal industry and other tertiary industries such as information, business, service, education, science researching industries in 2010 had an obvious rise compare with the data of 2005 and 2007.


2019 ◽  
Vol 11 (6) ◽  
pp. 1810
Author(s):  
Hua-Yueh Liu

Military government was lifted from Kinmen in 1992. The opening-up of cross-strait relations transformed the island into a tourist destination. This transformation led to electricity and water shortages in Kinmen. With the reduction in the number of troops, military facilities fell into disuse and are now being released for local government use. The aim of this project was to monitor the carbon footprint of a reused military facility during renovation of the facility. The LCBA-Neuma system, a local carbon survey software developed by the Low Carbon Building Alliance (LCBA) and National Cheng Kung University in Taiwan, was used in this project. The system analyzes the carbon footprint of the various phases of the building life cycle (LC) during renovation and carbon compensation strategies were employed to achieve the low carbon target. This project has pioneered the transformation of a disused military facility using this approach. The carbon footprint of energy uses during post-construction operation (CFeu) accounted for the majority of carbon emissions among all stages, at 1,088,632.19 kgCO2e/60y, while the carbon footprint of the new building materials (CFm) was the second highest, at 214,983.66 kgCO2e/60y. Installation of a solar cell system of 25.2 kWp on the rooftop as a carbon offset measure compensated for an estimated 66.1% of the total life-cycle carbon emissions. The findings of this study show that the process of reusing old military facilities can achieve the ultimate goal of zero carbon construction and sustainable development.


2013 ◽  
Vol 353-356 ◽  
pp. 2808-2812 ◽  
Author(s):  
Qiang Du ◽  
Huan Fang Zhang ◽  
Nan Liu ◽  
Xu Sheng Yin

Structural Insulated Panels (SIPs) are high performance load-bearing panels, which are considered to be the next generation construction material. Based on the results of the previous studies on SIP building, combined with the theory of life-cycle assessment, this paper constructs a dual-index evaluation model of economical efficiency and carbon emission in life cycle. By adopting the data of previous research, comparisons were conducted between SIP building and traditional masonry-concrete house, which suggests significant advantages of SIP building. The results implicate that SIPs would have extensive popularization potential in the process of development of low-carbon buildings.


2012 ◽  
Vol 573-574 ◽  
pp. 740-744
Author(s):  
De Li Yao ◽  
Tong Chen ◽  
Chang Lin Mi

This paper applies the total-life-cycle management theory to the construction and development of low-carbon buildings, and makes analysis of the implementation ways of low-carbon buildings in various stages of project development. So the low-carbon buildings in china can get sustainable development and the low-carbon economy can be realized rapidly.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
John Nicolet ◽  
Yolanda Mueller ◽  
Paola Paruta ◽  
Julien Boucher ◽  
Nicolas Senn

Abstract Background The medical field causes significant environmental impact. Reduction of the primary care practice carbon footprint could contribute to decreasing global carbon emissions. This study aims to quantify the average carbon footprint of a primary care consultation, describe differences between primary care practices (best, worst and average performing) in western Switzerland and identify opportunities for mitigation. Methods We conducted a retrospective carbon footprint analysis of ten private practices over the year 2018. We used life-cycle analysis to estimate carbon emissions of each sector, from manufacture to disposal, expressing results as CO2 equivalents per average consultation and practice. We then modelled an average and theoretical best- case and worst-case practices. Collected data included invoices, medical and furniture inventories, heating and power supply, staff and patient transport, laboratory analyses (in/out-house) waste quantities and management costs. Results An average medical consultation generated 4.8 kg of CO2eq and overall, an average practice produced 30 tons of CO2eq per year, with 45.7% for staff and patient transport and 29.8% for heating. Medical consumables produced 5.5% of CO2eq emissions, while in-house laboratory and X-rays contributed less than 1% each. Emergency analyses requiring courier transport caused 5.8% of all emissions. Support activities generated 82.6% of the total CO2eq. Simulation of best- and worst-case scenarios resulted in a ten-fold variation in CO2eq emissions. Conclusion Optimizing structural and organisational aspects of practice work could have a major impact on the carbon footprint of primary care practices without large-scale changes in medical activities.


Sign in / Sign up

Export Citation Format

Share Document