Power, Effect Size, P ‐Values, and Estimating Required Sample Size Using Python

2019 ◽  
Vol 3 ◽  
Author(s):  
Jessica K. Witt

What is best criterion for determining statistical significance? In psychology, the criterion has been p < .05. This criterion has been criticized since its inception, and the criticisms have been rejuvenated with recent failures to replicate studies published in top psychology journals. Several replacement criteria have been suggested including reducing the alpha level to .005 or switching to other types of criteria such as Bayes factors or effect sizes. Here, various decision criteria for statistical significance were evaluated using signal detection analysis on the outcomes of simulated data. The signal detection measure of area under the curve (AUC) is a measure of discriminability with a value of 1 indicating perfect discriminability and 0.5 indicating chance performance. Applied to criteria for statistical significance, it provides an estimate of the decision criterion’s performance in discriminating real effects from null effects. AUCs were high (M = .96, median = .97) for p values, suggesting merit in using p values to discriminate significant effects. AUCs can be used to assess methodological questions such as how much improvement will be gained with increased sample size, how much discriminability will be lost with questionable research practices, and whether it is better to run a single high-powered study or a study plus a replication at lower powers. AUCs were also used to compare performance across p values, Bayes factors, and effect size (Cohen’s d). AUCs were equivalent for p values and Bayes factors and were slightly higher for effect size. Signal detection analysis provides separate measures of discriminability and bias. With respect to bias, the specific thresholds that produced maximally-optimal utility depended on sample size, although this dependency was particularly notable for p values and less so for Bayes factors. The application of signal detection theory to the issue of statistical significance highlights the need to focus on both false alarms and misses, rather than false alarms alone.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 603
Author(s):  
Leonid Hanin

I uncover previously underappreciated systematic sources of false and irreproducible results in natural, biomedical and social sciences that are rooted in statistical methodology. They include the inevitably occurring deviations from basic assumptions behind statistical analyses and the use of various approximations. I show through a number of examples that (a) arbitrarily small deviations from distributional homogeneity can lead to arbitrarily large deviations in the outcomes of statistical analyses; (b) samples of random size may violate the Law of Large Numbers and thus are generally unsuitable for conventional statistical inference; (c) the same is true, in particular, when random sample size and observations are stochastically dependent; and (d) the use of the Gaussian approximation based on the Central Limit Theorem has dramatic implications for p-values and statistical significance essentially making pursuit of small significance levels and p-values for a fixed sample size meaningless. The latter is proven rigorously in the case of one-sided Z test. This article could serve as a cautionary guidance to scientists and practitioners employing statistical methods in their work.


2019 ◽  
Author(s):  
Rob Cribbie ◽  
Nataly Beribisky ◽  
Udi Alter

Many bodies recommend that a sample planning procedure, such as traditional NHST a priori power analysis, is conducted during the planning stages of a study. Power analysis allows the researcher to estimate how many participants are required in order to detect a minimally meaningful effect size at a specific level of power and Type I error rate. However, there are several drawbacks to the procedure that render it “a mess.” Specifically, the identification of the minimally meaningful effect size is often difficult but unavoidable for conducting the procedure properly, the procedure is not precision oriented, and does not guide the researcher to collect as many participants as feasibly possible. In this study, we explore how these three theoretical issues are reflected in applied psychological research in order to better understand whether these issues are concerns in practice. To investigate how power analysis is currently used, this study reviewed the reporting of 443 power analyses in high impact psychology journals in 2016 and 2017. It was found that researchers rarely use the minimally meaningful effect size as a rationale for the chosen effect in a power analysis. Further, precision-based approaches and collecting the maximum sample size feasible are almost never used in tandem with power analyses. In light of these findings, we offer that researchers should focus on tools beyond traditional power analysis when sample planning, such as collecting the maximum sample size feasible.


2021 ◽  
Vol 3 (1) ◽  
pp. 61-89
Author(s):  
Stefan Geiß

Abstract This study uses Monte Carlo simulation techniques to estimate the minimum required levels of intercoder reliability in content analysis data for testing correlational hypotheses, depending on sample size, effect size and coder behavior under uncertainty. The ensuing procedure is analogous to power calculations for experimental designs. In most widespread sample size/effect size settings, the rule-of-thumb that chance-adjusted agreement should be ≥.80 or ≥.667 corresponds to the simulation results, resulting in acceptable α and β error rates. However, this simulation allows making precise power calculations that can consider the specifics of each study’s context, moving beyond one-size-fits-all recommendations. Studies with low sample sizes and/or low expected effect sizes may need coder agreement above .800 to test a hypothesis with sufficient statistical power. In studies with high sample sizes and/or high expected effect sizes, coder agreement below .667 may suffice. Such calculations can help in both evaluating and in designing studies. Particularly in pre-registered research, higher sample sizes may be used to compensate for low expected effect sizes and/or borderline coding reliability (e.g. when constructs are hard to measure). I supply equations, easy-to-use tables and R functions to facilitate use of this framework, along with example code as online appendix.


2018 ◽  
Vol 7 (3) ◽  
pp. 63-69
Author(s):  
Suzanne L. Havstad ◽  
George W. Divine

ABSTRACT In this first of a two-part series on introductory biostatistics, we briefly describe common designs. The advantages and disadvantages of six design types are highlighted. The randomized clinical trial is the gold standard to which other designs are compared. We present the benefits of randomization and discuss the importance of power and sample size. Sample size and power calculations for any design need to be based on meaningful effects of interest. We give examples of how the effect of interest and the sample size interrelate. We also define concepts helpful to the statistical inference process. When drawing conclusions from a completed study, P values, point estimates, and confidence intervals will all assist the researcher. Finally, the issue of multiple comparisons is briefly explored. The second paper in this series will describe basic analytical techniques and discuss some common mistakes in the interpretation of data.


Sign in / Sign up

Export Citation Format

Share Document