scholarly journals The cost of large numbers of hypothesis tests on power, effect size and sample size

2010 ◽  
Vol 17 (1) ◽  
pp. 108-114 ◽  
Author(s):  
L C Lazzeroni ◽  
A Ray
Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 603
Author(s):  
Leonid Hanin

I uncover previously underappreciated systematic sources of false and irreproducible results in natural, biomedical and social sciences that are rooted in statistical methodology. They include the inevitably occurring deviations from basic assumptions behind statistical analyses and the use of various approximations. I show through a number of examples that (a) arbitrarily small deviations from distributional homogeneity can lead to arbitrarily large deviations in the outcomes of statistical analyses; (b) samples of random size may violate the Law of Large Numbers and thus are generally unsuitable for conventional statistical inference; (c) the same is true, in particular, when random sample size and observations are stochastically dependent; and (d) the use of the Gaussian approximation based on the Central Limit Theorem has dramatic implications for p-values and statistical significance essentially making pursuit of small significance levels and p-values for a fixed sample size meaningless. The latter is proven rigorously in the case of one-sided Z test. This article could serve as a cautionary guidance to scientists and practitioners employing statistical methods in their work.


2012 ◽  
Vol 509 ◽  
pp. 209-214
Author(s):  
Shao Peng Wu ◽  
Pan Pan ◽  
Ming Yu Chen

With the widespread application of asphalt mixture, current demand from transportation managers for construction and maintenance of their pavement network consumes large numbers of aggregates. If agencies excessively favor to some certain kinds of excellent aggregates, the cost of construction could be considerably expensive. The major objective of this study is to determine the feasibility of utilizing dacite in asphalt mixtures. By means of Marshall, freeze-thaw, rutting and three-point bending tests, the performances of dacite and basalt asphalt mixture are compared. The results of the testing illustrate that dacite asphalt mixture is more susceptible to gradation and asphalt content than basalt asphalt mixture. Meanwhile it is showed that the performances of dacite asphalt mixture can be improved greatly with the involvement of additives including active mineral powder and cement. Furthermore, it is validated that dacite can be used as alternative aggregate in asphalt mixture.


2021 ◽  
Author(s):  
Megha Joshi ◽  
James E Pustejovsky ◽  
S. Natasha Beretvas

The most common and well-known meta-regression models work under the assumption that there is only one effect size estimate per study and that the estimates are independent. However, meta-analytic reviews of social science research often include multiple effect size estimates per primary study, leading to dependence in the estimates. Some meta-analyses also include multiple studies conducted by the same lab or investigator, creating another potential source of dependence. An increasingly popular method to handle dependence is robust variance estimation (RVE), but this method can result in inflated Type I error rates when the number of studies is small. Small-sample correction methods for RVE have been shown to control Type I error rates adequately but may be overly conservative, especially for tests of multiple-contrast hypotheses. We evaluated an alternative method for handling dependence, cluster wild bootstrapping, which has been examined in the econometrics literature but not in the context of meta-analysis. Results from two simulation studies indicate that cluster wild bootstrapping maintains adequate Type I error rates and provides more power than extant small sample correction methods, particularly for multiple-contrast hypothesis tests. We recommend using cluster wild bootstrapping to conduct hypothesis tests for meta-analyses with a small number of studies. We have also created an R package that implements such tests.


2019 ◽  
Author(s):  
Rob Cribbie ◽  
Nataly Beribisky ◽  
Udi Alter

Many bodies recommend that a sample planning procedure, such as traditional NHST a priori power analysis, is conducted during the planning stages of a study. Power analysis allows the researcher to estimate how many participants are required in order to detect a minimally meaningful effect size at a specific level of power and Type I error rate. However, there are several drawbacks to the procedure that render it “a mess.” Specifically, the identification of the minimally meaningful effect size is often difficult but unavoidable for conducting the procedure properly, the procedure is not precision oriented, and does not guide the researcher to collect as many participants as feasibly possible. In this study, we explore how these three theoretical issues are reflected in applied psychological research in order to better understand whether these issues are concerns in practice. To investigate how power analysis is currently used, this study reviewed the reporting of 443 power analyses in high impact psychology journals in 2016 and 2017. It was found that researchers rarely use the minimally meaningful effect size as a rationale for the chosen effect in a power analysis. Further, precision-based approaches and collecting the maximum sample size feasible are almost never used in tandem with power analyses. In light of these findings, we offer that researchers should focus on tools beyond traditional power analysis when sample planning, such as collecting the maximum sample size feasible.


2021 ◽  
Vol 3 (1) ◽  
pp. 61-89
Author(s):  
Stefan Geiß

Abstract This study uses Monte Carlo simulation techniques to estimate the minimum required levels of intercoder reliability in content analysis data for testing correlational hypotheses, depending on sample size, effect size and coder behavior under uncertainty. The ensuing procedure is analogous to power calculations for experimental designs. In most widespread sample size/effect size settings, the rule-of-thumb that chance-adjusted agreement should be ≥.80 or ≥.667 corresponds to the simulation results, resulting in acceptable α and β error rates. However, this simulation allows making precise power calculations that can consider the specifics of each study’s context, moving beyond one-size-fits-all recommendations. Studies with low sample sizes and/or low expected effect sizes may need coder agreement above .800 to test a hypothesis with sufficient statistical power. In studies with high sample sizes and/or high expected effect sizes, coder agreement below .667 may suffice. Such calculations can help in both evaluating and in designing studies. Particularly in pre-registered research, higher sample sizes may be used to compensate for low expected effect sizes and/or borderline coding reliability (e.g. when constructs are hard to measure). I supply equations, easy-to-use tables and R functions to facilitate use of this framework, along with example code as online appendix.


Sign in / Sign up

Export Citation Format

Share Document