Contact Angle Hysteresis – Advantages and Disadvantages: A Critical Review

2021 ◽  
pp. 47-67
Author(s):  
Andrew Terhemen Tyowua ◽  
Stephen Gbaoron Yiase
2021 ◽  
Vol 9 ◽  
Author(s):  
Li Wang ◽  
Hu Zhang ◽  
Wei Li ◽  
Jiaxuan Li ◽  
Zhenyu Yi ◽  
...  

As a new display technology, electrowetting display (EWD) has many excellent display characteristics, such as paper-like, low power consumption, quick response and full color. These characteristics make EWD devices very suitable for portable devices. However, the gray-scale distortion caused by the contact angle hysteresis of EWDs seriously affects the accuracy of gray-scale display. To improve this phenomenon, the hysteresis curve of an EWD panel was studied according to the motion characteristics of advancing contact angle and receding contact angle of oil in a pixel. Then, a driving scheme for EWDs using alternating current (AC) voltage instead of direct current (DC) voltage was proposed in this paper. And the advantages and disadvantages of the driving scheme at different AC frequencies from 90 to 2,700 Hz were analyzed through experiments. According to the stability of aperture ratio in EWDs, a 470 Hz AC driving scheme was determined. Experimental results showed that the aperture ratio distortion of EWDs could be reduced from 35.82 to 5.97%, which significantly improved the display performance of pixel units.


2020 ◽  
Vol 8 (1) ◽  
pp. 47-67
Author(s):  
Andrew Terhemen Tyowua ◽  
Stephen Gbaoron Yiase

The existence of contact angle hysteresis – the difference between the values of the advancing and receding contact angles – is evident in nature (e.g. sticking of rain drops to car windscreens and window panes) and many industrial processes (e.g. surface coating, spraying, and dyeing of fabrics). This phenomenon is often viewed as a nuisance, but it is advantageous in many processes including dip and spin coating, spraying, and painting. With the early theoretical framework of Thomas Young, Robert Wenzel, and A. B. D. Cassie and S. Baxter, describing the wettability of solid surfaces and by extension contact angle, contact angle hysteresis has been deeply investigated. We review here the various ways of measuring contact angle and, consequently, contact angle hysteresis as well as related theoretical models. The successes and limitations of these models are highlighted. We conclude with the advantages and disadvantages of contact angle hysteresis whose presence in many processes is often considered as a nuisance, especially when "coffee stain" forms from the evaporation of a volatile liquid drop containing nonvolatile components.


2018 ◽  
Author(s):  
Qiao Liu ◽  
Abbasali Abouei Mehrizi ◽  
Hao Wang

2021 ◽  
Vol 923 ◽  
Author(s):  
Vanessa R. Kern ◽  
Joshua B. Bostwick ◽  
Paul H. Steen

Abstract


2021 ◽  
Vol 33 (6) ◽  
pp. 061707
Author(s):  
Alexander E. Dubinov ◽  
Djamilya N. Iskhakova ◽  
Valeria A. Lyubimtseva

Biomimetics ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 38
Author(s):  
Quentin Legrand ◽  
Stephane Benayoun ◽  
Stephane Valette

This investigation of morphology-wetting links was performed using a biomimetic approach. Three natural leaves’ surfaces were studied: two bamboo varieties and Ginkgo Biloba. Multiscale surface topographies were analyzed by SEM observations, FFT, and Gaussian filtering. A PDMS replicating protocol of natural surfaces was proposed in order to study the purely morphological contribution to wetting. High static contact angles, close to 135∘, were measured on PDMS replicated surfaces. Compared to flat PDMS, the increase in static contact angle due to purely morphological contribution was around 20∘. Such an increase in contact angle was obtained despite loss of the nanometric scale during the replication process. Moreover, a significant decrease of the hysteresis contact angle was measured on PDMS replicas. The value of the contact angle hysteresis moved from 40∘ for flat PDMS to less than 10∘ for textured replicated surfaces. The wetting behavior of multiscale textured surfaces was then studied in the frame of the Wenzel and Cassie–Baxter models. Whereas the classical laws made it possible to describe the wetting behavior of the ginkgo biloba replications, a hierarchical model was developed to depict the wetting behavior of both bamboo species.


Sign in / Sign up

Export Citation Format

Share Document