Contact Angle Hysteresis on a Heterogeneous Surface: Solution in the Limit of a Weakly Distorted Contact Line

1994 ◽  
Vol 28 (6) ◽  
pp. 415-420 ◽  
Author(s):  
J Crassous ◽  
E Charlaix
Langmuir ◽  
2011 ◽  
Vol 27 (11) ◽  
pp. 6890-6896 ◽  
Author(s):  
Siang-Jie Hong ◽  
Feng-Ming Chang ◽  
Tung-He Chou ◽  
Seong Heng Chan ◽  
Yu-Jane Sheng ◽  
...  

Author(s):  
Fangjun Hong ◽  
Ping Cheng ◽  
Zhen Sun ◽  
Huiying Wu

In this paper, the electrowetting dynamics of a droplet on a dielectric surface was investigated numerically by a mathematical model including dynamic contact angle and contact angle hysteresis. The fluid flow is described by laminar N-S equation, the free surface of the droplet is modeled by the Volume of Fluid (VOF) method, and the electrowetting force is incorporated by exerting an electrical force on the cells at the contact line. The Kilster’s model that can deal with both receding and advancing contact angle is adopted. Numerical results indicate that there is overshooting and oscillation of contact radius in droplet spreading process before it ceases the movement when the excitation voltage is high; while the overshooting is not observed for low voltage. The explanation for the contact line overshooting and some special characteristics of variation of contact radius with time were also conducted.


1996 ◽  
Vol 307 ◽  
pp. 167-190 ◽  
Author(s):  
Xiaofan Li ◽  
C. Pozrikidis

The hydrostatic shape, transient deformation, and asymptotic shape of a small liquid drop with uniform surface tension adhering to a planar wall subject to an overpassing simple shear flow are studied under conditions of Stokes flow. The effects of gravity are considered to be negligible, and the contact line is assumed to have a stationary circular or elliptical shape. In the absence of shear flow, the drop assumes a hydrostatic shape with constant mean curvature. Families of hydrostatic shapes, parameterized by the drop volume and aspect ratio of the contact line, are computed using an iterative finite-difference method. The results illustrate the effect of the shape of the contact line on the distribution of the contact angle around the base, and are discussed with reference to contact-angle hysteresis and stability of stationary shapes. The transient deformation of a drop whose viscosity is equal to that of the ambient fluid, subject to a suddenly applied simple shear flow, is computed for a range of capillary numbers using a boundary-integral method that incorporates global parameterization of the interface and interfacial regriding at large deformations. Critical capillary numbers above which the drop exhibits continued deformation, or the contact angle increases beyond or decreases below the limits tolerated by contact angle hysteresis are established. It is shown that the geometry of the contact line plays an important role in the transient and asymptotic behaviour at long times, quantified in terms of the critical capillary numbers for continued elongation. Drops with elliptical contact lines are likely to dislodge or break off before drops with circular contact lines. The numerical results validate the assumptions of lubrication theory for flat drops, even in cases where the height of the drop is equal to one fifth the radius of the contact line.


2018 ◽  
Vol 145 ◽  
pp. 03006
Author(s):  
Stanimir Iliev ◽  
Nina Pesheva ◽  
Pavel Iliev

In this work we present preliminary results from our numerical study of the shapes of a liquid meniscus in contact with doubly sinusoidal rough surfaces in Wenzel’s wetting regime. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes for a broad interval of surface roughness factors. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of physical defects. We find that depending on the mutual disposition of the contact line and the lattice of periodic defects, different stick-slip behaviors of the contact line depinning mechanism appear, leading to different values of the contact angle hysteresis.


1983 ◽  
Vol 137 ◽  
pp. 1-29 ◽  
Author(s):  
E. B. Dussan V. ◽  
Robert Tao-Ping Chow

It is common knowledge that relatively small drops or bubbles have a tendency to stick to the surfaces of solids. Two specific problems are investigated: the shape of the largest drop or bubble that can remain attached to an inclined solid surface; and the shape and speed at which it moves along the surface when these conditions are exceeded. The slope of the fluid-fluid interface relative to the surface of the solid is assumed to be small, making it possible to obtain results using analytic techniques. It is shown that from both a physical and mathematical point of view contact-angle hysteresis, i.e. the ability of the position of the contact line to remain fixed as long as the value of the contact angle θ lies within the interval θR [les ] θ [les ] θA, where θA [nequiv ] θR, emerges as the single most important characteristic of the system.


2018 ◽  
Vol 840 ◽  
pp. 131-153 ◽  
Author(s):  
J. T. Bradshaw ◽  
J. Billingham

Experiments have shown that a liquid droplet on an inclined plane can be made to move uphill by sufficiently strong, vertical oscillations (Brunet et al., Phys. Rev. Lett., vol. 99, 2007, 144501). In this paper, we study a two-dimensional, inviscid, irrotational model of this flow, with the velocity of the contact lines a function of contact angle. We use asymptotic analysis to show that, for forcing of sufficiently small amplitude, the motion of the droplet can be separated into an odd and an even mode, and that the weakly nonlinear interaction between these modes determines whether the droplet climbs up or slides down the plane, consistent with earlier work in the limit of small contact angles (Benilov and Billingham, J. Fluid Mech. vol. 674, 2011, pp. 93–119). In this weakly nonlinear limit, we find that, as the static contact angle approaches $\unicode[STIX]{x03C0}$ (the non-wetting limit), the rise velocity of the droplet (specifically the velocity of the droplet averaged over one period of the motion) becomes a highly oscillatory function of static contact angle due to a high frequency mode that is excited by the forcing. We also solve the full nonlinear moving boundary problem numerically using a boundary integral method. We use this to study the effect of contact angle hysteresis, which we find can increase the rise velocity of the droplet, provided that it is not so large as to completely fix the contact lines. We also study a time-dependent modification of the contact line law in an attempt to reproduce the unsteady contact line dynamics observed in experiments, where the apparent contact angle is not a single-valued function of contact line velocity. After adding lag into the contact line model, we find that the rise velocity of the droplet is significantly affected, and that larger rise velocities are possible.


Sign in / Sign up

Export Citation Format

Share Document