New Directions in the Fight against Cancer: From Metal Complexes to Nanostructured Materials

2012 ◽  
pp. 207-242 ◽  
Author(s):  
Santiago Gómez-Ruiz
2014 ◽  
Vol 70 (a1) ◽  
pp. C914-C914
Author(s):  
Nina Lock ◽  
Julia Matussek ◽  
Dietmar Stalke

Chalcogenide chemistry is rich and diverse: The large variety of molecular sulfur and selenium compounds can be ascribed to their multiple stable oxidation states and large radius enabling high coordination. Sulfur-nitrogen chemistry is thoroughly explored and well-understood; polyimido sulfur species S(NR)n with charge m- (n = 2, 3, 4; m = 0, 2) are analogues of SOn molecules (with charge: m-) in which oxygen has been replaced by isovalent NR imido groups [1]. These compounds have been studied in depth and have been demonstrated to be versatile ligand systems which form multifaceted potentially catalytic metal complexes and compounds with lithium organics [2]. Selenium-nitrogen chemistry is comparatively less developed than sulfur-nitrogen chemistry despite of significant contributions to the field [3]. This may be ascribed to the rich redox chemistry of selenium in addition to its ability to polymerize, unfortunately none of these properties are easily controlled. A crucial parameter in the development of sulfur-nitrogen chemistry is attributed to the access to sulfur diimides S(NR)2 and sulfur triimides S(NR)3. Therefore, our starting point in exploring new directions of selenium-nitrogen chemistry was to revisit Se(NtBu)2 (tBu = tertbutyl), which has been used as ligand for metal complexes, but also discussed in large detail with respect to structural geometry and stability. Herein, we are presenting a study of selenium-nitrogen chemistry based on Se(NtBu)2.


2017 ◽  
Vol 25 (2) ◽  
pp. 127-136 ◽  
Author(s):  
N.V. Usol’tseva ◽  
A.I. Smirnova ◽  
A.V. Kazak ◽  
N.I. Giricheva ◽  
N.E. Galanin ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C1521-C1521
Author(s):  
Mikhail Soldatov ◽  
Kirill Lomachenko ◽  
Nikolay Smolentsev ◽  
Alexander Soldatov

Nanoscale local atomic structure determines most of unique properties of novel materials without long range order. To study its fine details one has to use both computer nanodesign and advanced experimental methods for nanodiagnostics. The status of modern theoretical analysis of the experimental x-ray absorption spectra to extract structural parameters is presented. Novel in-situ technique for nanodiagnostics - extracting of 3D structure parameters on the basis of advanced quantitative analysis of X-ray absorption near edge structure (XANES) - has been developed. The possibility to extract information on bond angles and bond-lengths (with accuracy up to 0.002 nm) is demonstrated and it opens new perspectives of quantitative XANES analysis as a 3D local structure probe for any type of materials without long range order in atoms positions (all nanostructured materials and free clusters belong to this class of materials). Even more possibilities are opening by using simultaneously several experimental synchrotron based techniques: XANES and XES and/or RIXS. In the framework of these approaches, the results of recent studies of local atomic structure for several types of nanostructures including nanoclusters with different types of chemical bonding, core-shell nanoneedles and thin films of dilute magnetic semiconductors, 5d-transition metal-organic complexes, Cu1+ and Cu2+ binding sites in amyloid-β peptide, Co aqua complexes in aqueous solution, nanostructured materials for hydrogen storage and nanocatalysts based on zeolites and MOF are reported. Along with the calculations of conventional XANES and XES, we show a possibility to simulate core-to-core and valence-to-core RIXS as well. Molecular orbitals (or DOS) of metal complexes can be directly related to the peaks in XES spectra in RIXS maps. This information is essential for understanding of electronic structure of metal complexes and design of novel materials.


2019 ◽  
Vol 42 ◽  
Author(s):  
Penny Van Bergen ◽  
John Sutton

Abstract Sociocultural developmental psychology can drive new directions in gadgetry science. We use autobiographical memory, a compound capacity incorporating episodic memory, as a case study. Autobiographical memory emerges late in development, supported by interactions with parents. Intervention research highlights the causal influence of these interactions, whereas cross-cultural research demonstrates culturally determined diversity. Different patterns of inheritance are discussed.


Author(s):  
M. José-Yacamán

Electron microscopy is a fundamental tool in materials characterization. In the case of nanostructured materials we are looking for features with a size in the nanometer range. Therefore often the conventional TEM techniques are not enough for characterization of nanophases. High Resolution Electron Microscopy (HREM), is a key technique in order to characterize those materials with a resolution of ~ 1.7A. High resolution studies of metallic nanostructured materials has been also reported in the literature. It is concluded that boundaries in nanophase materials are similar in structure to the regular grain boundaries. That work therefore did not confirm the early hipothesis on the field that grain boundaries in nanostructured materials have a special behavior. We will show in this paper that by a combination of HREM image processing, and image calculations, it is possible to prove that small particles and coalesced grains have a significant surface roughness, as well as large internal strain.


2020 ◽  
Vol 7 (3) ◽  
pp. 786-794 ◽  
Author(s):  
Jingqi Han ◽  
Kin-Man Tang ◽  
Shun-Cheung Cheng ◽  
Chi-On Ng ◽  
Yuen-Kiu Chun ◽  
...  

A new class of luminescent cyclometalated Ir(iii) complexes with readily tunable mechanochromic properties derived from the mechanically induced trans-to-cis isomerization have been developed.


Addiction ◽  
1997 ◽  
Vol 92 (11) ◽  
pp. 1411-1422 ◽  
Author(s):  
Anthony P. Shakeshaft ◽  
Jenny A. Bowman ◽  
Rob W. Sanson-Fisher
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document