Genetics ◽  
1987 ◽  
Vol 117 (2) ◽  
pp. 297-307
Author(s):  
Loverine P Taylor ◽  
Virginia Walbot

ABSTRACT We have cloned and sequenced a 1.7-kb Mu element from a Mutator line of maize and compared its structure to Mu1, a 1.4-kb element. With the exception of a 385-bp block of DNA present in the 1.7-kb element, these transposable elements are structurally similar, sharing terminally inverted and internal direct repeated sequences. Derivation of 1.4-kb elements from the 1.7-kb class via deletion of internal sequence is suggested by the finding that a portion of the extra DNA in Mu1.7 is part of a truncated direct repeat sequence in the 1.4-kb element. An abundant poly(A)+ RNA homologous to a portion of this extra DNA is present in several tissues of both Mutator and non-Mutator lines. Analysis of transcripts from an unstable mutant bronze1 (bz) allele containing a Mu1.7 element inserted in an exon of the gene detects three species of poly(A)+ RNA that hybridize to a Bz1 (Bronze) gene probe: the largest contains the entire Mu1.7 element in the Bz1 gene transcript; another appears to be a spliced, chimeric transcript; the smallest is normal size Bz1 mRNA. The latter is most likely encoded by the normal-size alleles detected by Southern analysis of tissue expressing purple pigment, suggesting that normal gene function is restored by excision of the Mu1.7 element.


2013 ◽  
Vol 163 (4) ◽  
pp. 1640-1659 ◽  
Author(s):  
M. Mau ◽  
J. M. Corral ◽  
H. Vogel ◽  
M. Melzer ◽  
J. Fuchs ◽  
...  

Oncotarget ◽  
2017 ◽  
Vol 8 (25) ◽  
pp. 40693-40704 ◽  
Author(s):  
Yi Huang ◽  
Jiaying Zheng ◽  
Dunyan Chen ◽  
Feng Li ◽  
Wenbing Wu ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2708-2708
Author(s):  
Eric Jeandidier ◽  
Carine Gervais ◽  
Isabelle Radford-Weiss ◽  
Catherine Gangneux ◽  
Valerie Rimelen ◽  
...  

Abstract Abstract 2708 RUNX1 is implicated in numerous chromosomal abnormalities acquired in acute myeloid leukemia (AML). The most frequent one, the t(8;21) is associated with a particular morphology together with a favorable prognosis. This is not the case for other 21q abnormalities, that are much less frequent and for which the prognosis is quite different. Moreover, beside point mutations, conventional cytogenetics failed to detect some of chromosomal alterations involving RUNX1. Recently 3 cases of the rare and semi-cryptic t(7;21)(p22;q22) translocation expressing the RUNX1-USP42 fusion transcripts have been reported, demonstrating the recurrence of this abnormality in AML. We describe here 3 additional cases with the same translocation and fusion transcripts, associated to 5q alterations leading to EGR1 and CSF1R heterozygous losses. In all our patients, the t(7;21)(p22.1;q22.3) was initially detected by the systematic FISH evaluation of the blastic populations using ETO-AML1 Dual Fusion probe. Patient#1 bone marrow karyotype was characterized by a tetraploid clone (89,XXYY) with loss of chromosomes 15, 17 and 18 in addition to the t(7;21), and a unbalanced translocation der(5)t(5;13)(q23;q?) between long arms of chromosomes 5 and 13, resulting in a heterozygous loss of EGR1 and CSF1R. Patient #2 blood and bone marrow karyotypes revealed a diploid clone with a del(5)(q31q33) associated with the t(7;21). The FISH analysis confirmed EGR1 and CSF1R deletions. In patient #3, the bone marrow karyotype showed diploid/tetraploïd clones, both harboring the t(7;21)(p22;q22), confirmed by FISH experiments (WCP7, AML1 probes). In addition, a der(5)t(1;5)(q3?2;q21-23) was identified within the tetraploïd clone, resulting in the loss of EGR1 and CSF1R, confirmed by FISH. In all three cases a RUNX1-USP42 fusion transcript was detected using RT-PCR, as well as the reciprocal transcript. Sequence analysis of RT-PCR products showed that the breakpoints occurred exactly in the same introns of USP42 and RUNX1 as in the previously described cases. For patient #1 and #3 a chimeric transcript was found formed of the RUNX1 exon 7 fused to the USP42 exon 3. In patient #2, a shorter chimeric transcript arised from the fusion of the RUNX1 exon 5 to the exon 3 of USP42. As already noticed in the previous reports, an alternative splicing of the RUNX1 exon 6 has been detected in these three cases. The description of these 3 novel t(7;21) confirm the recurrence of this balanced translocation in AML, and shows that this chromosomal abnormality is often associated with diploid/tetraploid clones and/or 5q alterations. Special attention should be paid in karyotype analysis of AML with diploid or tetraploid clones harboring 5q alterations. In such cases RUNX1 rearrangements should be explored using FISH analysis, and RUNX1-USP42 fusion transcript should be searched by RT-PCR in positive cases. Prospective and retrospective studies of AML have now to be settled in order to assess the incidence and clinical relevance of this cryptic translocation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5266-5266
Author(s):  
Keisuke Kato ◽  
Ai Yoshimi ◽  
Satoru Matsushima ◽  
Chie Kobayashi ◽  
Kunio Fukuda ◽  
...  

Abstract [Introduction] Mechanism of recurrence is fully characterized and is significant to improve prognosis in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) and T lymphoblastic leukemia (T-ALL).. We have analyzed recurrent cases of childhood BCP-ALL and T-ALL. [Procedure] We analyzed clinical samples of 18 cases with BCP-ALL and 3 cases with T-ALL, who had been treated in our institution. We have investigated gene status of IKZF1, CRLF2, CDKN2A/2B, JAKs, IL7RA, and TP53 using RT-PCR and MLPA methods and IGH/TCR on genomic PCR. Whole exome analysis was done using Ion AmpliSeq Exome in seven cases. [Result] We analyzed clinical samples of 21 cases with ALL, who had been treated in our institution. The cases were 18 cases with BCP-ALL and 3 cases with T-ALL. We have investigated gene status of IKZF1, CRLF2, CDKN2A/2B,JAKs,IL7RA, NOTCH (for T-ALL), and TP53. Whole exome analysis was done in two cases, particularly for a case from which we have established cell line. < Result > Eight BCP-ALL cases with P2RY8-CRLF2 chimeric transcript: four cases of which had P2RY8-CRLF2 chimeric transcript only at initial diagnosis; two cases obtained transcript at recurrence. This was confirmed employing LD-PCR genomic analysis. Ten BCP-ALL cases had deletion of IKZF1; two showed deletion at relapse and a case demonstrated deletion at diagnosis only. Two BCP-ALL cases showed mutation of IL7RA. One of T-ALL cases from which we have established cell line showed mutation of MSH2 and more than 200 non-synonymous mutations on whole exome analysis. One T-ALL cases showed mutation of JAK3 at diagnosis. One BCP-ALL case had MLH1 mutation < Discussion > The present study has suggested acquisition of complex genetic change at different point of evolution may work in recurrence of ALL. The present study has indicated P2RY8-CRLF2 works not as simple growth advantage but rather as manifestation of genomic instability. This may be also illustrated by recurrent cases with T-ALL having mutation of MSH2 and BCP-ALL having mutation of MLH1. Mutation of mismatch repair gene may be driver of gene mutation acquisition and consequently alterations of CREBBP and RAS or IKZF1, TP53, mismatch repair genes, or emergence of P2RY-CRLF2 chimeric transcript may be prognostically relevant in childhood acute lymphoblastic leukemia. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
pp. hyv187
Author(s):  
Rie Ishikawa ◽  
Yosuke Amano ◽  
Masanori Kawakami ◽  
Mitsuhiro Sunohara ◽  
Kousuke Watanabe ◽  
...  

2009 ◽  
Vol 106 (30) ◽  
pp. 12353-12358 ◽  
Author(s):  
C. A. Maher ◽  
N. Palanisamy ◽  
J. C. Brenner ◽  
X. Cao ◽  
S. Kalyana-Sundaram ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Wang ◽  
Guo-Feng Xie ◽  
Yuan He ◽  
Ling Deng ◽  
Ya-Kang Long ◽  
...  

Introduction. Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer which is mostly prevalent in southern China. The development of NPC involves accumulation of multiple genetic changes. Chromosomal translocation is always thought to be accompanied with the fusion chimeric products. To data, the role of the fusion chimeric transcript remains obscure. Materials and Methods. We performed RNA sequencing to detect the fusion genes in ten NPC tissues. Sanger sequencing and quantitative RT-PCR were used to measure the level of the fusion chimeric transcript in NPC tissues and cell lines. The functional experiments such as CCK8 assay, colony formation, and migration/invasion were conducted to analyze the role of this transcript in NPC in vitro. Results. We demonstrated that the chimeric transcript SEPT7P2-PSPH was formed by trans-splicing of adjacent genes in the absence of chromosomal rearrangement and observed in both NPC patients and cell lines in parallel. Low-expression of the SEPT7P2-PSPH chimeric transcript induced the protein expression of PSPH and promoted cell proliferation, metastasis/invasion, and transforming ability in vitro. Conclusions. Our findings indicate that the chimeric transcript SEPT7P2-PSPH is a product of trans-splicing of two adjacent genes and might be a tumor suppressor gene, potentially having the role of anticancer activity.


Sign in / Sign up

Export Citation Format

Share Document