2019 ◽  
Vol 400 (3) ◽  
pp. 383-393 ◽  
Author(s):  
Lukas Roth ◽  
Julius Grzeschik ◽  
Steffen C. Hinz ◽  
Stefan Becker ◽  
Lars Toleikis ◽  
...  

Abstract Antibodies can be successfully engineered and isolated by yeast or phage display of combinatorial libraries. Still, generation of libraries comprising heavy chain as well as light chain diversities is a cumbersome process involving multiple steps. Within this study, we set out to compare the output of yeast display screening of antibody Fab libraries from immunized rodents that were generated by Golden Gate Cloning (GGC) with the conventional three-step method of individual heavy- and light-chain sub-library construction followed by chain combination via yeast mating (YM). We demonstrate that the GGC-based one-step process delivers libraries and antibodies from heavy- and light-chain diversities with similar quality to the traditional method while being significantly less complex and faster. Additionally, we show that this method can also be used to successfully screen and isolate chimeric chicken/human antibodies following avian immunization.


2020 ◽  
Vol 5 (4) ◽  
pp. 246-257
Author(s):  
SK Amir Hossain ◽  
SM Rifat Rahman ◽  
Toufiq Ahmed ◽  
Chanchal Mandal

Yeast surface display has become an increasingly popular tool for protein engineering and library screening applications. Although, recent advances have greatly expanded the capability of yeast surface display, the protein display system is still far away from industrial application. One of the major components of a stable, efficient and successful yeast surface display system is cell wall anchor protein with which our desired foreign protein will be attached. We studied 80 different yeast cell wall anchored proteins originated mostly from Saccharomyces cerevisiae and Candida albicans. We studied in details all the cell wall proteins in order to find out suitable cell wall proteins to recommend for the researchers to use in the construction of yeast display system. We considered selective physical properties of different yeast cell wall proteins that are crucial for selecting best suited cell surface anchor proteins which are molecular weight, binding domain of anchor protein, length of amino acid and fusion site. Finally, our studies showed that Ccw11, Ccw12. Cwp1, Cwp2, Dan1, Gas1, Gas5, Exg1, Ycr89, Ecm33, Pga4, Sap9, Sap10, Pst1, Pir1, Pir2, Pir3, Pir4, Cis1, Scw4, Scw6, Bgl2, Uth1, Scw1 are the promising and suitable cell wall anchor proteins could be used in construction of yeast cell surface display system. Additionally, this review presents detailed information about all the cell wall proteins in a single work. The future researchers in this field will be able to construct more efficient yeast display system for recombinant protein production at industrial scale using the knowledge presented in this work. Asian J. Med. Biol. Res. June 2019, 5(4): 246-257


2020 ◽  
Author(s):  
John Bowen ◽  
John Schneible ◽  
Collin Labar ◽  
Stefano Menegatti ◽  
Balaji M. Rao

AbstractWe present the construction and screening of yeast display libraries of cyclic peptides wherein site-selective enzymatic cyclization of linear peptides is achieved using bacterial transglu-taminase. To this end, we developed two alternative routes, namely (i) yeast display of linear peptides followed by treatment with recombinant transglutaminase in solution; or (ii) intracellular co-expression of linear peptides and transglutaminase to achieve cyclization in the endoplasmic reticulum prior to yeast surface display. The cyclization yield was evaluated via orthogonal detection of epitope tags integrated in the yeast-displayed peptides by flow cytometry, and via comparative cleavage of cyclic vs. linear peptides by tobacco etch virus (TEV) protease. Subsequently, yeast display libraries of transglutaminase-cyclized peptides were screened to isolate binders to the N-terminal region of the Yes-Associated Protein (YAP) and its WW domains using magnetic selection and fluorescence activated cell sorting (FACS). The identified cyclic peptide cyclo[E-LYLAYPAH-K] featured a KD of 1.67 µM for YAP and 0.84 µM for WW as well as high binding selectivity against albumin and lysozyme. These results demonstrate the usefulness of yeast surface display for screening transglutaminase-cyclized peptide libraries, and efficient identification of cyclic peptide ligands.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 757
Author(s):  
Huiyi Shang ◽  
Danni Yang ◽  
Dairong Qiao ◽  
Hui Xu ◽  
Yi Cao

Levan has wide applications in chemical, cosmetic, pharmaceutical and food industries. The free levansucrase is usually used in the biosynthesis of levan, but the poor reusability and low stability of free levansucrase have limited its large-scale use. To address this problem, the surface-displayed levansucrase in Saccharomyces cerevisiae were generated and evaluated in this study. The levansucrase from Zymomonas mobilis was displayed on the cell surface of Saccharomyces cerevisiae EBY100 using a various yeast surface display platform. The N-terminal fusion partner is based on a-agglutinin, and the C-terminal one is Flo1p. The yield of levan produced by these two whole-cell biocatalysts reaches 26 g/L and 34 g/L in 24 h, respectively. Meanwhile, the stability of the surface-displayed levansucrases is significantly enhanced. After six reuses, these two biocatalysts retained over 50% and 60% of their initial activities, respectively. Furthermore, the molecular weight and polydispersity test of the products suggested that the whole-cell biocatalyst of levansucrase displayed by Flo1p has more potentials in the production of levan with low molecular weight which is critical in certain applications. In conclusion, our method not only enable the possibility to reuse the enzyme, but also improves the stability of the enzyme.


Catalysts ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 94 ◽  
Author(s):  
Ian Dominic Flormata Tabañag ◽  
I-Ming Chu ◽  
Yu-Hong Wei ◽  
Shen-Long Tsai

Climate change is directly linked to the rapid depletion of our non-renewable fossil resources and has posed concerns on sustainability. Thus, imploring the need for us to shift from our fossil based economy to a sustainable bioeconomy centered on biomass utilization. The efficient bioconversion of lignocellulosic biomass (an ideal feedstock) to a platform chemical, such as bioethanol, can be achieved via the consolidated bioprocessing technology, termed yeast surface engineering, to produce yeasts that are capable of this feat. This approach has various strategies that involve the display of enzymes on the surface of yeast to degrade the lignocellulosic biomass, then metabolically convert the degraded sugars directly into ethanol, thus elevating the status of yeast from an immobilization material to a whole-cell biocatalyst. The performance of the engineered strains developed from these strategies are presented, visualized, and compared in this article to highlight the role of this technology in moving forward to our quest against climate change. Furthermore, the qualitative assessment synthesized in this work can serve as a reference material on addressing the areas of improvement of the field and on assessing the capability and potential of the different yeast surface display strategies on the efficient degradation, utilization, and ethanol production from lignocellulosic biomass.


Sign in / Sign up

Export Citation Format

Share Document