tev protease
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 44)

H-INDEX

18
(FIVE YEARS 3)

F1000Research ◽  
2022 ◽  
Vol 10 ◽  
pp. 1102
Author(s):  
Vladyslav Yadrykhins'ky ◽  
Charis Georgiou ◽  
Ruth Brenk

Background: FabB (3-oxoacyl-[acyl-carrier-protein] synthase 1) is part of the fatty acid synthesis II pathway found in bacteria and a potential target for antibiotics. The enzyme catalyses the Claisen condensation of malonyl-ACP (acyl carrier protein) with acyl-ACP via an acyl-enzyme intermediate. Here, we report the crystal structure of the intermediate-mimicking Pseudomonas aeruginosa FabB (PaFabB) C161A variant. Methods: His-tagged PaFabB C161A was expressed in E. coli Rosetta DE3 pLysS cells, cleaved by TEV protease and purified using affinity and size exclusion chromatography. Commercial screens were used to identify suitable crystallization conditions which were subsequently improved to obtain well diffracting crystals. Results: We developed a robust and efficient system for recombinant expression of PaFabB C161A. Conditions to obtain well diffracting crystals were established. The crystal structure of PaFabB C161A was solved by molecular replacement at 1.3 Å resolution. Binding site comparison between PaFabB and PaFabF revealed a conserved malonyl binding site but differences in the fatty acid binding channel. Conclusions: The PaFabB C161A crystal structure can be used as a template to facilitate the design of FabB inhibitors.


Author(s):  
Pietro Renna ◽  
Cristian Ripoli ◽  
Onur Dagliyan ◽  
Francesco Pastore ◽  
Marco Rinaudo ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Wen Zhu ◽  
Lifu Hu ◽  
Yang Wang ◽  
Liangyin Lv ◽  
Hui Wang ◽  
...  

Abstract Background Although Escherichia coli has been widely used for the expression of exogenous proteins, the secretory expression in this system is still a big obstacle. As one of the most important secretion pathways, hemolysin A (HlyA) system of E. coli can transport substrates directly from the cytoplasm to extracellular medium without the formation of any periplasmic intermediate, making it an ideal candidate for the development of the secretory production platform for exogenous proteins. Results In this work, we developed a novel production platform, THHly, based on the HlyA secretion system, and explored its applications in the efficient preparation and quick detection of tag peptides and anti-microbial peptides. In this novel platform the signal sequence of HlyA is fused to the C-terminal of target peptide, with Tobacco Etch Virus (TEV) protease cleavage site and 6*His tag between them. Five tag peptides displayed good secretory properties in E. coli BL21 (DE3), among which T7 tag and S tag were obtained by two rounds of purification steps and TEV cleavage, and maintained their intrinsic immunogenicity. Furthermore, Cecropin A and Melittin, two different types of widely explored anti-microbial peptides, were produced likewise and verified to possess anti-microbial/anti-tumor bioactivities. No significant bacterial growth inhibition was observed during the fusion protein expression, indicating that the fusion form not only mediated the secretion but also decreased the toxicity of anti-microbial peptides (AMPs) to the host bacteria. To the best of our knowledge, this is the first report to achieve the secretory expression of these two AMPs in E. coli with considerable potential for manufacturing and industrialization purposes. Conclusions The results demonstrate that the HlyA based novel production platform of E. coli allowed the efficient secretory production and purification of peptides, thus suggesting a promising strategy for the industrialized production of peptide pharmaceuticals or reagents. Graphical Abstract


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7142
Author(s):  
Junhao Cheng ◽  
Marhaba Ahmat ◽  
Henan Guo ◽  
Xubiao Wei ◽  
Lulu Zhang ◽  
...  

CLP is a novel hybrid peptide derived from CM4, LL37 and TP5, with significantly reduced hemolytic activity and increased antibacterial activity than parental antimicrobial peptides. To avoid host toxicity and obtain high-level bio-production of CLP, we established a His-tagged SUMO fusion expression system in Escherichia coli. The fusion protein can be purified using a Nickel column, cleaved by TEV protease, and further purified in flow-through of the Nickel column. As a result, the recombinant CLP with a yield of 27.56 mg/L and a purity of 93.6% was obtained. The purified CLP exhibits potent antimicrobial activity against gram+ and gram- bacteria. Furthermore, the result of propidium iodide staining and scanning electron microscopy (SEM) showed that CLP can induce the membrane permeabilization and cell death of Enterotoxigenic Escherichia coli (ETEC) K88. The analysis of thermal stability results showed that the antibacterial activity of CLP decreases slightly below 70 °C for 30 min. However, when the temperature was above 70 °C, the antibacterial activity was significantly decreased. In addition, the antibacterial activity of CLP was stable in the pH range from 4.0 to 9.0; however, when pH was below 4.0 and over 9.0, the activity of CLP decreased significantly. In the presence of various proteases, such as pepsin, papain, trypsin and proteinase K, the antibacterial activity of CLP remained above 46.2%. In summary, this study not only provides an effective strategy for high-level production of antimicrobial peptides and evaluates the interference factors that affect the biological activity of hybrid peptide CLP, but also paves the way for further exploration of the treatment of multidrug-resistant bacterial infections.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhifen Yang ◽  
Lingyu Li ◽  
Ahu Turkoz ◽  
Pohan Chen ◽  
Rona Harari-Steinfeld ◽  
...  

Abstract Background Adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells combined with checkpoint inhibition may prevent T cell exhaustion and improve clinical outcomes. However, the approach is limited by cumulative costs and toxicities. Methods To overcome this drawback, we created a CAR-T (RB-340-1) that unites in one product the two modalities: a CRISPR interference-(CRISPRi) circuit prevents programmed cell death protein 1 (PD-1) expression upon antigen-encounter. RB-340-1 is engineered to express an anti-human epidermal growth factor receptor 2 (HER2) CAR single chain variable fragment (scFv), with CD28 and CD3ζ co-stimulatory domains linked to the tobacco etch virus (TEV) protease and a single guide RNA (sgRNA) targeting the PD-1 transcription start site (TSS). A second constructs includes linker for activation of T cells (LAT) fused to nuclease-deactivated spCas9 (dCas9)-Kruppel-associated box (KRAB) via a TEV-cleavable sequence (TCS). Upon antigen encounter, the LAT-dCas9-KRAB (LdCK) complex is cleaved by TEV allowing targeting of dCas9-KRAB to the PD-1 gene TSS. Results Here, we show that RB-340-1 consistently demonstrated higher production of homeostatic cytokines, enhanced expansion of CAR-T cells in vitro, prolonged in vivo persistence and more efficient suppression of HER2+ FaDu oropharyngeal cancer growth compared to the respective conventional CAR-T cell product. Conclusions As the first application of CRISPRi toward a clinically relevant product, RB-340-1 with the conditional, non-gene editing and reversible suppression promotes CAR-T cells resilience to checkpoint inhibition, and their persistence and effectiveness against HER2-expressing cancer xenografts.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1102
Author(s):  
Vladyslav Yadrykhins'ky ◽  
Charis Georgiou ◽  
Ruth Brenk

Background: FabB (3-oxoacyl-[acyl-carrier-protein] synthase 1) is part of the fatty acid synthesis II pathway found in bacteria and a potential target for antibiotics. The enzyme catalyses the Claisen condensation of malonyl-ACP (acyl carrier protein) with acyl-ACP via an acyl intermediate. Here, we report the crystal structure of the intermediate-mimicking Pseudomonas aeruginosa FabB (PaFabB) C161A variant. Methods: His-tagged PaFabB C161A was expressed in E.coli Rosetta DE3 pLysS cells, cleaved by TEV protease and purified using affinity and size exclusion chromatography. Commercial screens were used to identify suitable crystallization conditions which were subsequently improved to obtain well diffracting crystals. Results: We developed a robust and efficient system for recombinant expression of PaFabB C161A. Conditions to obtain well diffracting crystals were established. The crystal structure of PaFabB C161A was solved by molecular replacement at 1.3 Å resolution. Conclusions: The PaFabB C161A crystal structure can be used as a template to facilitate the design of FabB inhibitors.


2021 ◽  
pp. 106021
Author(s):  
Joaquín Dalla Rizza ◽  
Claudia Ortega ◽  
Federico Carrión ◽  
Martín Fló ◽  
Agustín Correa

2021 ◽  
Vol 12 ◽  
Author(s):  
Ming-Hao Yang ◽  
Chung-Chi Hu ◽  
Chi-Hzeng Wong ◽  
Jian-Jong Liang ◽  
Hui-Ying Ko ◽  
...  

We have developed a new binary epitope-presenting CVP platform based on bamboo mosaic virus (BaMV) by using the sortase A (SrtA)-mediated ligation technology. The reconstructed BaMV genome harbors two modifications: 1) a coat protein (CP) with N-terminal extension of the tobacco etch virus (TEV) protease recognition site plus 4 extra glycine (G) residues as the SrtA acceptor; and 2) a TEV protease coding region replacing that of the triple-gene-block proteins. Inoculation of such construct, pKB5G, on Nicotiana benthamiana resulted in the efficient production of filamentous CVPs ready for SrtA-mediated ligation with desired proteins. The second part of the binary platform includes an expression vector for the bacterial production of donor proteins. We demonstrated the applicability of the platform by using the recombinant envelope protein domain III (rEDIII) of Japanese encephalitis virus (JEV) as the antigen. Up to 40% of the BaMV CP subunits in each CVP were loaded with rEDIII proteins in 1 min. The rEDIII-presenting BaMV CVPs (BJLPET5G) could be purified using affinity chromatography. Immunization assays confirmed that BJLPET5G could induce the production of neutralizing antibodies against JEV infections. The binary platform could be adapted as a useful alternative for the development and mass production of vaccine candidates.


Author(s):  
Enkhtuya Bayar ◽  
Yuanyuan Ren ◽  
Yinghua Chen ◽  
Yafang Hu ◽  
Shuncheng Zhang ◽  
...  

2021 ◽  
Vol 44 (02) ◽  
Author(s):  
THI-HUYEN TRAN ◽  
NGOC-TUAN NGUYEN ◽  
LIN-WOO KANG

Xanthomonas oryzae pv. oryzae (Xoo) is causal agent of bacterial blight (BB) in rice. Many genes in Xoo have been identified in recently years. One of these genes, a gene coded for uridine diphosphate (UDP)-MurNAc-tripeptide ligase (MurE), catalyses the addition of meso-diaminopimelic acid (m-DAP) into peptidoglycan by coupled to the hydrolysis of ATP has more popular interest. However, there are no experimental data to confirm hypothesis of this enzyme in Xoo. A significant overview at the ATP binding site of most the MurE ligases demonstrated much more variable with amino acid sequence identities in this part, variable percentage around 22 to 26%. Besides, a refined homology structural feature between EcMurE and XooMurE will very important for determining possible involvement of the MurE ligase activity in Xoo. Therefore, a new recombinant protein named XooMurE from Xoo was purified with the N-terminal His-tagged form through a Ni-NTA column in this study. After purification, the Histag was removed then out of the N-terminal His-tagged XooMurE by TEV protease. Purification effectiveness of XooMurE over 95% in this study could produce an essential material for e studies about mechanism of XooMurE and consequently available direction for discovering novel anti-bacterial compounds against Xanthomonas oryzae pv. oryzae (xoo).  


Sign in / Sign up

Export Citation Format

Share Document