Noble Metal Nanoparticles and Their Antimicrobial Properties

2017 ◽  
pp. 191-201 ◽  
Author(s):  
Lini Huo ◽  
Peiyuan Li
RSC Advances ◽  
2018 ◽  
Vol 8 (70) ◽  
pp. 40454-40463 ◽  
Author(s):  
Diamela María Rocca ◽  
Julie P. Vanegas ◽  
Kelsey Fournier ◽  
M. Cecilia Becerra ◽  
Juan C. Scaiano ◽  
...  

Natural derived compounds, lignins, can be used as reducing and stabilizing agents to synthesize noble metal nanoparticles with antimicrobial properties.


2020 ◽  
Vol 14 (3) ◽  
pp. 1789-1800 ◽  
Author(s):  
Muhammad Nisar ◽  
Shujaat Ali Khan ◽  
Maryam Gul ◽  
Abdur Rauf ◽  
Salman Zafar ◽  
...  

The aim of the current research finding was to synthesize, characterize and antibacterial evaluation of sparfloxacin-mediated noble metal nanoparticles. Noble metal [silver (Ag), and gold (Au)] nanoparticles (NPs), mediated with fluoroquinolone, an anti-bacterial drug [Sparfloxacin, (Sp)], was synthesized by a facile and convenient procedure. Formulated Ag-Sp NPs, and Au-Sp NPs exhibited stability against variation in pH, NaCl solution, temperature, and time. The structural topographies of Ag-Sp, and Au-Sp NPs were determined by fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM) atomic force microscopy (AFM), and energy dispersive X-ray (EDX). UV-Vis revealed the formulation of NPs by showing typical surface Plasmon absorption maxima at 410 nm for Ag-Sp NPs and 555 nm for Au-Sp NPs. The AFM and SEM analysis ascertained stable mono dispersed Ag-Sp NPs and Au-Sp NPs in the size range of 40-50 nm, and 70-80 nm, respectively. Ag-Sp, and Au-Sp NPs exhibited antibacterial traits against Bacillus subtilis, Staphylococcus aureus, and Klebsiella pneumonia, showing a zone of inhibition (ZOI) ranging from 20±0.98 mm to 24±0.94 mm (Ag-Sp NPs), and 22±0.79 mm to 26±0.92 mm (Au-Sp NPs) at dose of 3 mg/mL.


RSC Advances ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 4092-4105 ◽  
Author(s):  
A. Rozmysłowska-Wojciechowska ◽  
E. Karwowska ◽  
S. Poźniak ◽  
T. Wojciechowski ◽  
L. Chlubny ◽  
...  

Schematic representation of the concept of present study. The flowchart shows the process of surface-modification of Ti3C2 MXene and the subsequent ecotoxicological analyses employed.


2021 ◽  
Vol 129 (12) ◽  
pp. 125302
Author(s):  
Wajeeha Saeed ◽  
Zeeshan Abbasi ◽  
Shumaila Majeed ◽  
Sohail Anjum Shahzad ◽  
Abdul Faheem Khan ◽  
...  

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 107 ◽  
Author(s):  
Ming Qin ◽  
Qing Chang ◽  
Yinkai Yu ◽  
Hongjing Wu

By the deposition of noble metal nanoparticles on a metal oxide substrate with a specific micro-/nanostructure, namely, yolk-shell structure, a remarkable improvement in photocatalytic performance can be achieved by the composites. Nevertheless, noble metal nanoparticles only distribute on the surface shell of metal oxide substrates when the conventional wet-chemistry reduction approach is employed. Herein, we proposed a novel acoustic levitation synthesis of Pt nanoparticles deposited on yolk-shell La2O3. The composites not only displayed well-defined, homogeneous distribution of Pt NPs on the exterior shell of La2O3 and the interior La2O3 core, but an enhanced chemical interaction between Pt and La2O3. The unique structure not only can display improved photocatalytic degradation rate toward methyl orange, but also may show great potential in fields of hydrogen generation, environmental protection, etc. The novel acoustic levitation synthesis can supplement the methodology of synthesizing well dispersed noble metal oxides over the whole yolk-shell structure through noble metal NPs deposition method.


Sign in / Sign up

Export Citation Format

Share Document