scholarly journals Light‐Assisted Charge Propagation in Networks of Organic Semiconductor Crystallites on Hexagonal Boron Nitride

2019 ◽  
Vol 29 (43) ◽  
pp. 1903816 ◽  
Author(s):  
Aleksandar Matković ◽  
Jakob Genser ◽  
Markus Kratzer ◽  
Daniel Lüftner ◽  
Zhongrui Chen ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Aleksandar Matković ◽  
Jakob Genser ◽  
Daniel Lüftner ◽  
Markus Kratzer ◽  
Radoš Gajić ◽  
...  

Abstract This study focuses on hexagonal boron nitride as an ultra-thin van der Waals dielectric substrate for the epitaxial growth of highly ordered crystalline networks of the organic semiconductor parahexaphenyl. Atomic force microscopy based morphology analysis combined with density functional theory simulations reveal their epitaxial relation. As a consequence, needle-like crystallites of parahexaphenyl grow with their long axes oriented five degrees off the hexagonal boron nitride zigzag directions. In addition, by tuning the deposition temperature and the thickness of hexagonal boron nitride, ordered networks of needle-like crystallites as long as several tens of micrometers can be obtained. A deeper understanding of the organic crystallites growth and ordering at ultra-thin van der Waals dielectric substrates will lead to grain boundary-free organic field effect devices, limited only by the intrinsic properties of the organic semiconductors.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Aleksandar Matković ◽  
Jakob Genser ◽  
Daniel Lüftner ◽  
Markus Kratzer ◽  
Radoš Gajić ◽  
...  

2019 ◽  
Author(s):  
Matěj Velický ◽  
Sheng Hu ◽  
Colin R. Woods ◽  
Peter S. Toth ◽  
Viktor Zólyomi ◽  
...  

Marcus-Hush theory of electron transfer is one of the pillars of modern electrochemistry with a large body of supporting experimental evidence presented to date. However, some predictions, such as the electrochemical behavior at microdisk electrodes, remain unverified. Herein, we present a study of electron tunneling across a hexagonal boron nitride barrier between a graphite electrode and redox levels in a liquid solution. This was achieved by the fabrication of microdisk electrodes with a typical diameter of 5 µm. Analysis of voltammetric measurements, using two common redox mediators, yielded several electrochemical parameters, including the electron transfer rate constant, limiting current, and transfer coefficient. They show a significant departure from the Butler-Volmer behavior in a clear manifestation of the Marcus-Hush theory of electron transfer. In addition, our system provides a novel experimental platform, which could be applied to address a number of scientific problems such as identification of reaction mechanisms, surface modification, or long-range electron transfer.


Polymers ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 206 ◽  
Author(s):  
Elisseos Verveniotis ◽  
Yuji Okawa ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
Takaaki Taniguchi ◽  
...  

2021 ◽  
Vol 125 (6) ◽  
pp. 1325-1335 ◽  
Author(s):  
Cesar Jara ◽  
Tomáš Rauch ◽  
Silvana Botti ◽  
Miguel A. L. Marques ◽  
Ariel Norambuena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document