scholarly journals Core/Shell Perovskite Nanocrystals: Synthesis of Highly Efficient and Environmentally Stable FAPbBr 3 /CsPbBr 3 for LED Applications

2020 ◽  
Vol 30 (31) ◽  
pp. 1910582 ◽  
Author(s):  
Chengxi Zhang ◽  
Sheng Wang ◽  
Xiaomin Li ◽  
Mingjian Yuan ◽  
Lyudmila Turyanska ◽  
...  
2019 ◽  
Author(s):  
Jiajia Tao ◽  
Hong-Ping Ma ◽  
Kaiping Yuan ◽  
Yang Gu ◽  
Jianwei Lian ◽  
...  

<div>As a promising oxygen evolution reaction semiconductor, TiO2 has been extensively investigated for solar photoelectrochemical water splitting. Here, a highly efficient and stable strategy for rationally preparing GaON cocatalysts on TiO2 by atomic layer deposition is demonstrated, which we show significantly enhances the</div><div>photoelectrochemical performance compared to TiO2-based photoanodes. For TiO2@20 nm-GaON core-shell nanowires a photocurrent density up to 1.10 mA cm-2 (1.23 V vs RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of TiO2 NWs. Furthermore, the oxygen vacancy formation on GaON as well as the band gap matching with TiO2 not only provides more active sites for water oxidation but also enhances light absorption to promote interfacial charge separation and migration. Density functional theory studies of model systems of GaON-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaON core-shell nanowires provide a deeper understanding and universal strategy for enhancing photoelectrochemical performance of photoanodes now available. </div>


2019 ◽  
Author(s):  
Michael Worku ◽  
Yu Tian ◽  
Chenkun Zhou ◽  
Haoran Lin ◽  
Maya Chaaban ◽  
...  

Metal halide perovskite nanocrystals (NCs) have emerged as a new generation light emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g. platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectral region. Despite remarkable advances in the field of metal halide perovskite NCs over the last few years, many nanostructures in inorganic NCs have yet been realized in metal halide perovskites and producing highly efficient blue emitting perovskite NCs remains challenging and of great interest. Here we report for the first time the discovery of highly efficient blue emitting cesium lead bromide perovskite (CsPbBr3) NCs with hollow structures. By facile solution processing of cesium lead bromide perovskite precursor solution containing additional ethylenediammonium bromide and sodium bromide, in-situ formation of hollow CsPbBr3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effects results in color tuning of CsPbBr3 NCs from green to blue with high PLQEs of up to 81 %.<br><div><br></div>


Author(s):  
Ning Zhang ◽  
Sufen Lin ◽  
Fuchen Wang ◽  
Yongdi Liu ◽  
Jinlong Zhang ◽  
...  

2021 ◽  
pp. 2100438
Author(s):  
Chengxi Zhang ◽  
Jiayi Chen ◽  
Lingmei Kong ◽  
Lin Wang ◽  
Sheng Wang ◽  
...  

2021 ◽  
Vol 258 ◽  
pp. 117719
Author(s):  
Hessam Jafari ◽  
Gholam Reza Mahdavinia ◽  
Bagher Kazemi ◽  
Hermann Ehrlich ◽  
Yvonne Joseph ◽  
...  

2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Haitao Chen ◽  
Renhua Li ◽  
Anqi Guo ◽  
Yu Xia

AbstractThe poor stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals is the most impediment to its application in the field of photoelectrics. In this work, monodisperse CsPbBr3/TiO2 nanocrystals are successfully prepared by coating titanium precursor on the surface of colloidal CsPbBr3 nanocrystals at room temperature. The CsPbBr3/TiO2 nanocomposites exhibit excellent stability, remaining the identical particle size (9.2 nm), crystal structures and optical properties. Time-resolved photoluminescence decay shows that the lifetime of CsPbBr3/TiO2 nanocrystals is about 4.04 ns and keeps great stability after lasting two months in the air. Results show that the coating of TiO2 on CsPbBr3 NCs greatly suppressed the anion exchange and photodegradation, which are the main reasons for dramatically improving their chemical stability and photostability. The results provide an effective method to solve the stability problem of perovskite nanostructures and are expected to have a promising application in optoelectronic fieldsArticle highlights 1. Prepared the all-inorganic CsPbBr3/TiO2 core/shell perovskite nanocrystals by an easy method. 2. Explored its essences of PL and lifetime of the synthesized CsPbBr3/TiO2 perovskite nanocrystals. 3. CsPbBr3/TiO2 nanocrystals show the great thermal stability after the post-annealing. 4. The CsPbBr3/TiO2 nanocrystals have a high PLQY and have a promising application in solar cells.


Sign in / Sign up

Export Citation Format

Share Document