4D Printing of Engineered Living Materials

2021 ◽  
pp. 2106843
Author(s):  
Laura K. Rivera‐Tarazona ◽  
Tarjani Shukla ◽  
Kanwar Abhay Singh ◽  
Akhilesh K. Gaharwar ◽  
Zachary T. Campbell ◽  
...  
Keyword(s):  
Author(s):  
Khodadad Mostakim ◽  
Nahid Imtiaz Masuk ◽  
Md. Rakib Hasan ◽  
Md. Shafikul Islam

The advancement in 3D printing has led to the rapid growth of 4D printing technology. Adding time, as the fourth dimension, this technology ushered the potential of a massive evolution in fields of biomedical technologies, space applications, deployable structures, manufacturing industries, and so forth. This technology performs ingenious design, using smart materials to create advanced forms of the 3-D printed specimen. Improvements in Computer-aided design, additive manufacturing process, and material science engineering have ultimately favored the growth of 4-D printing innovation and revealed an effective method to gather complex 3-D structures. Contrast to all these developments, novel material is still a challenging sector. However, this short review illustrates the basic of 4D printing, summarizes the stimuli responsive materials properties, which have prominent role in the field of 4D technology. In addition, the practical applications are depicted and the potential prospect of this technology is put forward.


2021 ◽  
Vol 126 ◽  
pp. 103374
Author(s):  
Saoussen Dimassi ◽  
Frédéric Demoly ◽  
Christophe Cruz ◽  
H. Jerry Qi ◽  
Kyoung-Yun Kim ◽  
...  
Keyword(s):  

EBioMedicine ◽  
2021 ◽  
Vol 69 ◽  
pp. 103473
Author(s):  
Enateri V Alakpa
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joaquin Caro-Astorga ◽  
Kenneth T. Walker ◽  
Natalia Herrera ◽  
Koon-Yang Lee ◽  
Tom Ellis

AbstractEngineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose.


2021 ◽  
Vol 68 ◽  
pp. 102605
Author(s):  
Chen Chen ◽  
Min Zhang ◽  
Chaofan Guo ◽  
Huizhi Chen
Keyword(s):  

Small ◽  
2021 ◽  
pp. 2100910
Author(s):  
Keumbee Kim ◽  
Yuanhang Guo ◽  
Jaehee Bae ◽  
Subi Choi ◽  
Hyeong Yong Song ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Teunis van Manen ◽  
Shahram Janbaz ◽  
Kaspar M. B. Jansen ◽  
Amir A. Zadpoor

AbstractShape-shifting materials are a powerful tool for the fabrication of reconfigurable materials. Upon activation, not only a change in their shape but also a large shift in their material properties can be realized. As compared with the 4D printing of 2D-to-3D shape-shifting materials, the 4D printing of reconfigurable (i.e., 3D-to-3D shape-shifting) materials remains challenging. That is caused by the intrinsically 2D nature of the layer-by-layer manner of fabrication, which limits the possible shape-shifting modes of 4D printed reconfigurable materials. Here, we present a single-step production method for the fabrication and programming of 3D-to-3D shape-changing materials, which requires nothing more than a simple modification of widely available fused deposition modeling (FDM) printers. This simple modification allows the printer to print on curved surfaces. We demonstrate how this modified printer can be combined with various design strategies to achieve high levels of complexity and versatility in the 3D-to-3D shape-shifting behavior of our reconfigurable materials and devices. We showcase the potential of the proposed approach for the fabrication of deployable medical devices including deployable bifurcation stents that are otherwise extremely challenging to create.


2021 ◽  
pp. 2000216
Author(s):  
Georges Adam ◽  
Amine Benouhiba ◽  
Kanty Rabenorosoa ◽  
Cédric Clévy ◽  
David J. Cappelleri

Sign in / Sign up

Export Citation Format

Share Document