scholarly journals Jammed Emulsions with Adhesive Pea Protein Particles for Elastoplastic Edible 3D Printed Materials (Adv. Funct. Mater. 45/2021)

2021 ◽  
Vol 31 (45) ◽  
pp. 2170336
Author(s):  
Simha Sridharan ◽  
Marcel B. J. Meinders ◽  
Leonard M. Sagis ◽  
Johannes H. Bitter ◽  
Constantinos V. Nikiforidis
2021 ◽  
pp. 2101749
Author(s):  
Simha Sridharan ◽  
Marcel B. J. Meinders ◽  
Leonard M. Sagis ◽  
Johannes H. Bitter ◽  
Constantinos V. Nikiforidis

2018 ◽  
Vol 60 (7-8) ◽  
pp. 679-686 ◽  
Author(s):  
Jim Floor ◽  
Bas van Deursen ◽  
Erik Tempelman

2021 ◽  
pp. 106934
Author(s):  
Belal M.K. Alnajjar ◽  
André Buchau ◽  
Lars Baumgártner ◽  
Jens Anders
Keyword(s):  

2016 ◽  
Vol 19 (7) ◽  
pp. A564
Author(s):  
M Alband ◽  
RM Lee ◽  
M Penny ◽  
S Brocchini ◽  
ST Hilton

Author(s):  
M.A. SEREZHKIN ◽  
D.O. KLIMYUK ◽  
A.I. PLOKHIKH

The article presents the study of the application of 3D printing technology for rapid tooling in sheet metal forming for custom or small–lot manufacturing. The main issue of the usage of 3D printing technology for die tooling was discovered. It is proposed to use the method of mathematical modelling to investigate how the printing parameters affect the compressive strength of FDM 3D–printed parts. Using expert research methods, the printing parameters most strongly affecting the strength of products were identified for further experiments. A method for testing the strength of 3D–printed materials has been developed and tested.


Author(s):  
Dika Handayani ◽  
Nicole Wagner ◽  
Victor Okhuysen ◽  
Michael Seitz ◽  
Kyle Garibaldi

2018 ◽  
Vol 59 (s2) ◽  
pp. E65-E70 ◽  
Author(s):  
Tae Hui Kang ◽  
Brett G. Compton ◽  
William T. Heller ◽  
Shuo Qian ◽  
Gregory S. Smith ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4544
Author(s):  
Osman Konuray ◽  
Arnau Sola ◽  
Jordi Bonada ◽  
Agnieszka Tercjak ◽  
Albert Fabregat-Sanjuan ◽  
...  

Versatile acrylate–epoxy hybrid formulations are becoming widespread in photo/thermal dual-processing scenarios, especially in 3D printing applications. Usually, parts are printed in a stereolithography or digital light processing (DLP) 3D printer, after which a thermal treatment would bestow the final material with superior mechanical properties. We report the successful formulation of such a hybrid system, consisting of a commercial 3D printing acrylate resin modified by an epoxy–anhydride mixture. In the final polymeric network, we observed segregation of an epoxy-rich phase as nano-domains, similar to what was observed in a previous work. However, in the current work, we show the effectiveness of a coupling agent added to the formulation to mitigate this segregation for when such phase separation is undesired. The hybrid materials showed significant improvement of Young’s modulus over the neat acrylate. Once the flexible, partially-cured material was printed with a minimal number of layers, it could be molded into a complex form and thermally cured. Temporary shapes were readily programmable on this final material, with easy shape recovery under mild temperatures. Inspired by repairable 3D printed materials described recently, we manufactured a large object by printing its two halves, and then joined them covalently at the thermal cure stage with an apparently seamless union.


Author(s):  
Heather L. Lai ◽  
Cuiyu Kuang ◽  
Jared Nelson

The development of flexible, viscoelastic materials for consumer 3D printers has provided the opportunity for a wide range of devices with damping behavior such as tuned vibration isolators to be innovatively developed and inexpensively manufactured. However, there is currently little information available about the dynamic behavior of these 3D printed materials necessary for modeling of dynamic behavior prior to print. In order to fully utilize these promising materials, a deeper understanding of the material properties, and the subsequent dynamic behavior is critical. This study evaluates the use of three different types of models: transient response, frequency response and hysteretic response to predict the dynamic behavior of viscoelastic 3D printed materials based on static and dynamic material properties. Models of viscoelastic materials are presented and verified experimentally using two 3D printable materials and two traditional viscoelastic materials. The experimental response of each of the materials shows agreement with the modeled behavior, and underscores the need for improved characterization of the dynamic properties of viscoelastic 3D printable materials.


Sign in / Sign up

Export Citation Format

Share Document