In Situ Ion‐Conducting Protective Layer Strategy to Stable Lithium Metal Anode for All‐Solid‐State Sulfide‐Based Lithium Metal Batteries

2020 ◽  
pp. 2001698
Author(s):  
Cheng Wang ◽  
Xiaolin Sun ◽  
Li Yang ◽  
Depeng Song ◽  
Yue Wu ◽  
...  
2021 ◽  
pp. 129911
Author(s):  
Saisai Li ◽  
Yun Huang ◽  
Wenhao Ren ◽  
Xing Li ◽  
Mingshan Wang ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
pp. 7667-7674
Author(s):  
Song Li ◽  
Xian-Shu Wang ◽  
Qi-Dong Li ◽  
Qi Liu ◽  
Pei-Ran Shi ◽  
...  

A multifunctional artificial protective layer is in situ fabricated on the surface of Li anode, which facilitates stable cycle of Li anode in carbonate electrolyte by forming a unique SEI and inducing homogeneous deposition of lithium ions.


Author(s):  
Lara Dienemann ◽  
Anil Saigal ◽  
Michael A Zimmerman

Abstract Commercialization of energy-dense lithium metal batteries relies on stable and uniform plating and stripping on the lithium metal anode. In electrochemical-mechanical modeling of solid-state batteries, there is a lack of consideration of specific mechanical properties of battery-grade lithium metal. Defining these characteristics is crucial for understanding how lithium ions plate on the lithium metal anode, how plating and stripping affect deformation of the anode and its interfacing material, and whether dendrites are suppressed. Recent experiments show that the dominant mode of deformation of lithium metal is creep. This study measures the time and temperature dependent mechanics of two thicknesses of commercial lithium anodes inside an industrial dry room, where battery cells are manufactured at high volume. Furthermore, a directional study examines the anisotropic microstructure of 100 µm thick lithium anodes and its effect on bulk creep mechanics. It is shown that these lithium anodes undergo plastic creep as soon as a coin cell is manufactured at a pressure of 0.30 MPa, and achieving thinner lithium foils, a critical goal for solid-state lithium batteries, is correlated to anisotropy in both lithium's microstructure and mechanical properties.


Author(s):  
Jiachen Ma ◽  
Ruge Quhe ◽  
Zheyu Zhang ◽  
Chen Yang ◽  
Xiuying Zhang ◽  
...  

An efficient screening procedure for two-dimensional (2D) solid-electrolyte interphases (SEIs) is designed. In the concrete case, the two selected 2D SEIs (h-BN and α-BNyne) do stabilize the interface between the solid-state electrolyte Li10GeP2S12 and the lithium metal anode, blocking the electron transfer and maintaining the Li-ion flow.


Nano Research ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 4256-4265 ◽  
Author(s):  
Chunpeng Yang ◽  
Boyang Liu ◽  
Feng Jiang ◽  
Ying Zhang ◽  
Hua Xie ◽  
...  

ACS Omega ◽  
2020 ◽  
Vol 5 (14) ◽  
pp. 8299-8304 ◽  
Author(s):  
Shuaiguo Hao ◽  
Zhipeng Ma ◽  
Yao Zhao ◽  
Lina Kong ◽  
Haoyan He ◽  
...  

Small Methods ◽  
2021 ◽  
pp. 2001035
Author(s):  
Zhiyuan Han ◽  
Chen Zhang ◽  
Qiaowei Lin ◽  
Yunbo Zhang ◽  
Yaqian Deng ◽  
...  

Author(s):  
Kuirong Deng ◽  
Tianyu Guan ◽  
Fuhui Liang ◽  
Xiaoqiong Zheng ◽  
Qingguang Zeng ◽  
...  

Solid-state lithium metal batteries (LMBs) assembled with polymer electrolytes (PEs) and lithium metal anodes are promising batteries owing to their enhanced safeties and ultrahigh theoretical energy densities. Nevertheless, polymer electrolytes...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Guo ◽  
Wanying Zhang ◽  
Yubing Si ◽  
Donghai Wang ◽  
Yongzhu Fu ◽  
...  

AbstractThe interfacial instability of the lithium-metal anode and shuttling of lithium polysulfides in lithium-sulfur (Li-S) batteries hinder the commercial application. Herein, we report a bifunctional electrolyte additive, i.e., 1,3,5-benzenetrithiol (BTT), which is used to construct solid-electrolyte interfaces (SEIs) on both electrodes from in situ organothiol transformation. BTT reacts with lithium metal to form lithium 1,3,5-benzenetrithiolate depositing on the anode surface, enabling reversible lithium deposition/stripping. BTT also reacts with sulfur to form an oligomer/polymer SEI covering the cathode surface, reducing the dissolution and shuttling of lithium polysulfides. The Li–S cell with BTT delivers a specific discharge capacity of 1,239 mAh g−1 (based on sulfur), and high cycling stability of over 300 cycles at 1C rate. A Li–S pouch cell with BTT is also evaluated to prove the concept. This study constructs an ingenious interface reaction based on bond chemistry, aiming to solve the inherent problems of Li–S batteries.


Sign in / Sign up

Export Citation Format

Share Document