Vacuum‐Assisted Layer‐by‐Layer Carbon Nanotube/Ti 3 C 2 T X MXene Films for Detecting Human Movements

2021 ◽  
pp. 2101096
Author(s):  
Jing‐Qi Wang ◽  
Peng‐Fei Qian ◽  
Tian‐Jiao Lou ◽  
Wenyi Wang ◽  
Wen‐Hao Geng ◽  
...  
Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
Weston Grove ◽  
Emmett Hull ◽  
Z. J. Pei ◽  
...  

Additive manufacturing (AM) is a class of manufacturing processes where material is deposited in a layer-by-layer fashion to fabricate a three-dimensional part directly from a computer-aided design model. With a current market share of 44%, thermoplastic-based additive manufacturing such as fused deposition modeling (FDM) is a prevailing technology. A key challenge for AM parts (especially for parts made by FDM) in engineering applications is the weak inter-layer adhesion. The lack of bonding between filaments usually results in delamination and mechanical failure. To address this challenge, this study embedded carbon nanotubes into acrylonitrile butadiene styrene (ABS) thermoplastics via a filament extrusion process. The vigorous response of carbon nanotubes to microwave irradiation, leading to the release of a large amount of heat, is used to melt the ABS thermoplastic matrix adjacent to carbon nanotubes within a very short time period. This treatment is found to enhance the inter-layer adhesion without bulk heating to deform the 3D printed parts. Tensile and flexural tests were performed to evaluation the effects of microwave irradiation on mechanical properties of the specimens made by FDM. Scanning electron microscopic (SEM) images were taken to characterize the fracture surfaces of tensile test specimens. The actual carbon nanotube contents in the filaments were measured by conducting thermogravimetric analysis (TGA). The effects of microwave irradiation on the electrical resistivity of the filament were also reported.


2017 ◽  
Vol 52 (11) ◽  
pp. 1457-1464
Author(s):  
Weiwei Lin ◽  
Yonatan Rotenberg ◽  
Hadi Fekrmandi ◽  
Cesar Levy

Buckypaper/DYAD/Buckypaper and Buckypaper/DYAD/(polyaniline/multiwalled carbon nanotube) composites films were made by frit compression method and layer-by-layer attachment method. Transmission electron microscopy and scanning electron microscopy were used to study the morphology properties of polyaniline/multiwalled carbon nanotube and the results showed that carbon nanotubes were well dispersed in the polymer matrix. Free vibration test results showed that the double-sided attachment of the sensor had higher damping ratio values than single-sided attachment. Also, damping ratios were higher when the composite sensor was placed at the beam's clamped end. Furthermore, the Buckypaper/DYAD/(polyaniline/multiwalled carbon nanotube) combination exhibited higher damping ratios than the other cases tested. Thus, these samples have the potential of being simultaneously strain sensors and dampers.


2013 ◽  
Vol 24 (4) ◽  
pp. 492-502 ◽  
Author(s):  
Kittipong Saetia ◽  
Jan M. Schnorr ◽  
Matthew M. Mannarino ◽  
Sung Yeol Kim ◽  
Gregory C. Rutledge ◽  
...  

Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7782-7791 ◽  
Author(s):  
Yanhu Zhan ◽  
Emanuele Lago ◽  
Chiara Santillo ◽  
Antonio Esaú Del Río Castillo ◽  
Shuai Hao ◽  
...  

A carbon nanotube/boron nitride/rubber composite with anisotropic electrical conductivity exhibits an EMI shielding effectiveness of 22.41 dB mm−1 and a thermal conductivity equal to 0.25 W m−1 K−1.


Sign in / Sign up

Export Citation Format

Share Document