scholarly journals High Throughput Screening: Benchmarking Computational Alchemy for Carbide, Nitride, and Oxide Catalysts (Adv. Theory Simul. 4/2019)

2019 ◽  
Vol 2 (4) ◽  
pp. 1970010
Author(s):  
Charles D. Griego ◽  
Karthikeyan Saravanan ◽  
John A. Keith
2016 ◽  
Vol 370 ◽  
pp. 279-290 ◽  
Author(s):  
Joshua Minwoo Kweun ◽  
Chenzhe Li ◽  
Yongping Zheng ◽  
Maenghyo Cho ◽  
Yoon Young Kim ◽  
...  

2020 ◽  
Author(s):  
Seoin Back ◽  
Kevin Tran ◽  
Zachary Ulissi

Discovering acid-stable, cost-effective and active catalysts for oxygen evolution reaction (OER) is critical since this reaction is bottlenecking many electrochemical energy conversion systems. Current systems use extremely expensive iridium oxide catalysts. Identifying Ir-free or catalysts with reduced Ir-composition has been suggested as goals, but no systematic strategy to discover such catalysts has been reported. In this work, we performed high-throughput computational screening to investigate bimetalic oxide catalysts with space groups derived from those of IrO$_x$, identified promising OER catalysts predicted to satisfy all the desired properties: Co-Ir, Fe-Ir and Mo-Ir bimetallic oxides. We find that for the given crystal structures explored, it is essential to include noble metals to maintain the acid-stability, although one-to-one mixing of noble and non-noble metal oxides could keep the materials survive under the acidic conditions. Based on the calculated results, we provide insights to efficiently perform future high-throughput screening to discover catalysts with desirable properties.


2010 ◽  
Vol 53 (5) ◽  
pp. 303-307 ◽  
Author(s):  
Kohji Omata ◽  
Yuichiro Yamazaki ◽  
Yasukazu Kobayashi ◽  
Muneyoshi Yamada

2020 ◽  
Author(s):  
Seoin Back ◽  
Kevin Tran ◽  
Zachary Ulissi

Discovering acid-stable, cost-effective and active catalysts for oxygen evolution reaction (OER) is critical since this reaction is bottlenecking many electrochemical energy conversion systems. Current systems use extremely expensive iridium oxide catalysts. Identifying Ir-free or catalysts with reduced Ir-composition has been suggested as goals, but no systematic strategy to discover such catalysts has been reported. In this work, we performed high-throughput computational screening to investigate bimetalic oxide catalysts with space groups derived from those of IrO$_x$, identified promising OER catalysts predicted to satisfy all the desired properties: Co-Ir, Fe-Ir and Mo-Ir bimetallic oxides. We find that for the given crystal structures explored, it is essential to include noble metals to maintain the acid-stability, although one-to-one mixing of noble and non-noble metal oxides could keep the materials survive under the acidic conditions. Based on the calculated results, we provide insights to efficiently perform future high-throughput screening to discover catalysts with desirable properties.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
L Hingorani ◽  
NP Seeram ◽  
B Ebersole

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
K Georgousaki ◽  
N DePedro ◽  
AM Chinchilla ◽  
N Aliagiannis ◽  
F Vicente ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
LS Espindola ◽  
RG Dusi ◽  
KR Gustafson ◽  
J McMahon ◽  
JA Beutler

2014 ◽  
Author(s):  
Clair Cochrane ◽  
Halil Ruso ◽  
Anthony Hope ◽  
Rosemary G Clarke ◽  
Christopher Barratt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document