scholarly journals Discovery of Acid-Stable Oxygen Evolution Catalysts : High-throughput Computational Screening of Equimolar Bimetallic Oxides

Author(s):  
Seoin Back ◽  
Kevin Tran ◽  
Zachary Ulissi

Discovering acid-stable, cost-effective and active catalysts for oxygen evolution reaction (OER) is critical since this reaction is bottlenecking many electrochemical energy conversion systems. Current systems use extremely expensive iridium oxide catalysts. Identifying Ir-free or catalysts with reduced Ir-composition has been suggested as goals, but no systematic strategy to discover such catalysts has been reported. In this work, we performed high-throughput computational screening to investigate bimetalic oxide catalysts with space groups derived from those of IrO$_x$, identified promising OER catalysts predicted to satisfy all the desired properties: Co-Ir, Fe-Ir and Mo-Ir bimetallic oxides. We find that for the given crystal structures explored, it is essential to include noble metals to maintain the acid-stability, although one-to-one mixing of noble and non-noble metal oxides could keep the materials survive under the acidic conditions. Based on the calculated results, we provide insights to efficiently perform future high-throughput screening to discover catalysts with desirable properties.

2020 ◽  
Author(s):  
Seoin Back ◽  
Kevin Tran ◽  
Zachary Ulissi

Discovering acid-stable, cost-effective and active catalysts for oxygen evolution reaction (OER) is critical since this reaction is bottlenecking many electrochemical energy conversion systems. Current systems use extremely expensive iridium oxide catalysts. Identifying Ir-free or catalysts with reduced Ir-composition has been suggested as goals, but no systematic strategy to discover such catalysts has been reported. In this work, we performed high-throughput computational screening to investigate bimetalic oxide catalysts with space groups derived from those of IrO$_x$, identified promising OER catalysts predicted to satisfy all the desired properties: Co-Ir, Fe-Ir and Mo-Ir bimetallic oxides. We find that for the given crystal structures explored, it is essential to include noble metals to maintain the acid-stability, although one-to-one mixing of noble and non-noble metal oxides could keep the materials survive under the acidic conditions. Based on the calculated results, we provide insights to efficiently perform future high-throughput screening to discover catalysts with desirable properties.


2014 ◽  
Vol 6 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Aniketa Shinde ◽  
Ryan J. R. Jones ◽  
Dan Guevarra ◽  
Slobodan Mitrovic ◽  
Natalie Becerra-Stasiewicz ◽  
...  

2020 ◽  
Vol 49 (48) ◽  
pp. 17505-17510
Author(s):  
Guan-Bo Wang ◽  
Chia-Shuo Hsu ◽  
Hao Ming Chen

The family of bimetallic oxides, chalcogenides, and pnictides is regarded as a promising and cost-effective oxygen evolution reaction (OER) catalyst compared to noble metals.


2016 ◽  
Vol 370 ◽  
pp. 279-290 ◽  
Author(s):  
Joshua Minwoo Kweun ◽  
Chenzhe Li ◽  
Yongping Zheng ◽  
Maenghyo Cho ◽  
Yoon Young Kim ◽  
...  

2018 ◽  
Author(s):  
isabelle Heath-Apostolopoulos ◽  
Liam Wilbraham ◽  
Martijn Zwijnenburg

We discuss a low-cost computational workflow for the high-throughput screening of polymeric photocatalysts and demonstrate its utility by applying it to a number of challenging problems that would be difficult to tackle otherwise. Specifically we show how having access to a low-cost method allows one to screen a vast chemical space, as well as to probe the effects of conformational degrees of freedom and sequence isomerism. Finally, we discuss both the opportunities of computational screening in the search for polymer photocatalysts, as well as the biggest challenges.


Coatings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 420 ◽  
Author(s):  
Bae ◽  
Yu ◽  
Jung ◽  
Lee ◽  
Choi

Large-area and uniform plasmonic nanostructures have often been fabricated by simply evaporating noble metals such as gold and silver on a variety of nanotemplates such as nanopores, nanotubes, and nanorods. However, some highly uniform nanotemplates are limited to be utilized by long, complex, and expensive fabrication. Here, we introduce a cost-effective and high-throughput fabrication method for plasmonic interference coupled nanostructures based on quasi-uniform anodic aluminum oxide (QU-AAO) nanotemplates. Industrial aluminum, with a purity of 99.5%, and copper were used as a base template and a plasmonic material, respectively. The combination of these modifications saves more than 18 h of fabrication time and reduces the cost of fabrication 30-fold. From optical reflectance data, we found that QU-AAO based plasmonic nanostructures exhibit similar optical behaviors to highly ordered (HO) AAO-based nanostructures. By adjusting the thickness of the AAO layer and its pore size, we could easily control the optical properties of the nanostructures. Thus, we expect that QU-AAO might be effectively utilized for commercial plasmonic applications.


Author(s):  
Haomin Chen ◽  
Lee Loong Wong ◽  
Stefan Adams

The identification of materials for advanced energy-storage systems is still mostly based on experimental trial and error. Increasingly, computational tools are sought to accelerate materials discovery by computational predictions. Here are introduced a set of computationally inexpensive software tools that exploit the bond-valence-based empirical force field previously developed by the authors to enable high-throughput computational screening of experimental or simulated crystal-structure models of battery materials predicting a variety of properties of technological relevance, including a structure plausibility check, surface energies, an inventory of equilibrium and interstitial sites, the topology of ion-migration paths in between those sites, the respective migration barriers and the site-specific attempt frequencies. All of these can be predicted from CIF files of structure models at a minute fraction of the computational cost of density functional theory (DFT) simulations, and with the added advantage that all the relevant pathway segments are analysed instead of arbitrarily predetermined paths. The capabilities and limitations of the approach are evaluated for a wide range of ion-conducting solids. An integrated simple kinetic Monte Carlo simulation provides rough (but less reliable) predictions of the absolute conductivity at a given temperature. The automated adaptation of the force field to the composition and charge distribution in the simulated material allows for a high transferability of the force field within a wide range of Lewis acid–Lewis base-type ionic inorganic compounds as necessary for high-throughput screening. While the transferability and precision will not reach the same levels as in DFT simulations, the fact that the computational cost is several orders of magnitude lower allows the application of the approach not only to pre-screen databases of simple structure prototypes but also to structure models of complex disordered or amorphous phases, and provides a path to expand the analysis to charge transfer across interfaces that would be difficult to cover by ab initio methods.


Sign in / Sign up

Export Citation Format

Share Document