scholarly journals Adaptation and forage productivity of cool‐season grasses in the central USA

age ◽  
2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Kenneth P. Vogel ◽  
Rob Mitchell
Keyword(s):  
EDIS ◽  
2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Jose C.B. Dubeux ◽  
Nicolas DiLorenzo ◽  
Kalyn Waters ◽  
Jane C. Griffin

Florida has 915,000 beef cows and 125,000 replacement heifers (USDA, 2016). Developing these heifers so that they can become productive females in the cow herd is a tremendous investment in a cow/calf operation, an investment that takes several years to make a return. The good news is that there are options to develop heifers on forage-based programs with the possibility of reducing costs while simultaneously meeting performance targets required by the beef industry. Mild winters in Florida allows utilization of cool-season forages that can significantly enhance the performance of grazing heifers. During the warm-season, integration of forage legumes into grazing systems will provide additional nutrients to meet the performance required to develop a replacement heifer to become pregnant and enter the mature cow herd. In this document, we will propose a model for replacement heifer development, based on forage research performed in trials at the NFREC Marianna.   


Author(s):  
K.H. Widdup ◽  
T.L. Knight ◽  
C.J. Waters

Slow establishment of caucasian clover (Trifolium ambiguum L.) is hindering the use of this legume in pasture mixtures. Improved genetic material is one strategy of correcting the problem. Newly harvested seed of hexaploid caucasian clover germplasm covering a range of origins, together with white and red clover and lucerne, were sown in 1 m rows in a Wakanui soil at Lincoln in November 1995. After 21 days, the caucasian clover material as a group had similar numbers of emerged seedlings as white clover and lucerne, but was inferior to red clover. There was wide variation among caucasian clover lines (48-70% seedling emergence), with the cool-season selection from cv. Monaro ranked the highest. Recurrent selection at low temperatures could be used to select material with improved rates of seedling emergence. Red clover and lucerne seedlings produced significantly greater shoot and root dry weight than caucasian and white clover seedlings. Initially, caucasian clover seedlings partitioned 1:1 shoot to root dry weight compared with 3:1 for white clover. After 2 months, caucasian clover seedlings had similar shoot growth but 3 times the root growth of white clover. Between 2 and 5 months, caucasian clover partitioned more to root and rhizome growth, resulting in a 0.3:1 shoot:root ratio compared with 2:1 for white clover. Both clover species had similar total dry weight after 5 months. Unhindered root/ rhizome devel-opment is very important to hasten the establishment phase of caucasian clover. The caucasian clover lines KZ3 and cool-season, both selections from Monaro, developed seedlings with greater shoot and root growth than cv. Monaro. KZ3 continued to produce greater root growth after 5 months, indicating the genetic potential for improvement in seedling growth rate. Different pasture estab-lishment techniques are proposed that take account of the seedling growth characteristics of caucasian clover. Keywords: establishment, genetic variation, growth, seedling emergence, Trifolium ambiguum


Crop Science ◽  
1990 ◽  
Vol 30 (2) ◽  
pp. 338 ◽  
Author(s):  
Douglas A. Johnson ◽  
Kay H. Asay ◽  
Larry L. Tieszen ◽  
James R. Ehleringer ◽  
Paul G. Jefferson
Keyword(s):  

Crop Science ◽  
1987 ◽  
Vol 27 (4) ◽  
pp. 810-812 ◽  
Author(s):  
H. Kenno ◽  
M. A. Brick ◽  
C. E. Townsend
Keyword(s):  

Crop Science ◽  
2002 ◽  
Vol 42 (3) ◽  
pp. 890 ◽  
Author(s):  
Blair L. Waldron ◽  
Kay H. Asay ◽  
Kevin B. Jensen

itsrj ◽  
2021 ◽  
Author(s):  
Matthew T. Elmore ◽  
Daniel P. Tuck
Keyword(s):  

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 180
Author(s):  
Eigo Tochimoto ◽  
Mario Marcello Miglietta ◽  
Leonardo Bagaglini ◽  
Roberto Ingrosso ◽  
Hiroshi Niino

Characteristics of extratropical cyclones that cause tornadoes in Italy are investigated. Tornadoes between 2007 and 2016 are analyzed, and statistical analysis of the associated cyclone structures and environments is performed using the JRA-55 reanalysis. Tornadoes are distributed sporadically around the cyclone location within a window of 10° × 10°. The difference in the cyclone tracks partially explains the seasonal variability in the distribution of tornadoes. The highest number of tornadoes occur south of the cyclone centers, mainly in the warm sector, while a few are observed along the cold front. Composite mesoscale parameters are examined to identify the environmental conditions associated with tornadoes in different seasons. Potential instability is favorable to tornado development in autumn. The highest convective available potential energy (CAPE) in this season is associated with relatively high-temperature and humidity at low-levels, mainly due to the strong evaporation over the warm Mediterranean Sea. Upper-level potential vorticity (PV) anomalies and the associated cold air reduce the static stability above the cyclone center, mainly in spring and winter. On average, the values of CAPE are lower than for US tornadoes and comparable with those occurring in Japan, while storm relative helicity (SREH) is comparable with US tornadoes and higher than Japanese tornadoes, indicating that the environmental conditions for Italian tornadoes have peculiar characteristics. Overall, the conditions emerging in this study are close to the high-shear, low-CAPE environments typical of cool-season tornadoes in the Southeastern US.


Sign in / Sign up

Export Citation Format

Share Document